Error: File: untitled5 Line: 19 Column: 1 Function definitions in a script must appear at the end of the file. Move all statements after the “f” function definition to before
% Define parameters
m = 1;
L = 16;
g = 9.81;
H = -22;
theta_0 = -deg2rad(170); % Convert initial angle to radians
theta_B = deg2rad(55);
a=0;
% Calculate initial angular velocity
omega_B = sqrt(g / L * (1 – cos(theta_B)));
% Define ODEs
function dy = f(t, y)
dy(1) = y(2);
dy(2) = -g;
end
% Initial conditions
[a, omega_B ] = y0;
% Solve ODEs
[t, y] = ode45(@f, [0, sqrt(2 * (H + L * (1 – cos(theta_B))) / g)], y0);
% Horizontal coordinate of landing point
X = y(end, 1);
% Round to nearest whole number
X = round(X);
% Display result
disp([‘Horizontal coordinate of landing point (X): ‘, num2str(X), ‘ meters’]);% Define parameters
m = 1;
L = 16;
g = 9.81;
H = -22;
theta_0 = -deg2rad(170); % Convert initial angle to radians
theta_B = deg2rad(55);
a=0;
% Calculate initial angular velocity
omega_B = sqrt(g / L * (1 – cos(theta_B)));
% Define ODEs
function dy = f(t, y)
dy(1) = y(2);
dy(2) = -g;
end
% Initial conditions
[a, omega_B ] = y0;
% Solve ODEs
[t, y] = ode45(@f, [0, sqrt(2 * (H + L * (1 – cos(theta_B))) / g)], y0);
% Horizontal coordinate of landing point
X = y(end, 1);
% Round to nearest whole number
X = round(X);
% Display result
disp([‘Horizontal coordinate of landing point (X): ‘, num2str(X), ‘ meters’]); % Define parameters
m = 1;
L = 16;
g = 9.81;
H = -22;
theta_0 = -deg2rad(170); % Convert initial angle to radians
theta_B = deg2rad(55);
a=0;
% Calculate initial angular velocity
omega_B = sqrt(g / L * (1 – cos(theta_B)));
% Define ODEs
function dy = f(t, y)
dy(1) = y(2);
dy(2) = -g;
end
% Initial conditions
[a, omega_B ] = y0;
% Solve ODEs
[t, y] = ode45(@f, [0, sqrt(2 * (H + L * (1 – cos(theta_B))) / g)], y0);
% Horizontal coordinate of landing point
X = y(end, 1);
% Round to nearest whole number
X = round(X);
% Display result
disp([‘Horizontal coordinate of landing point (X): ‘, num2str(X), ‘ meters’]); task-6 (projectile motion: linear versus non-linea MATLAB Answers — New Questions