Email: helpdesk@telkomuniversity.ac.id

This Portal for internal use only!

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • IBM
  • Visual Paradigm
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Office
      • Windows
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Categories
  • Microsoft
    • Microsoft Apps
    • Office
    • Operating System
    • VLS
    • Developer Tools
    • Productivity Tools
    • Database
    • AI + Machine Learning
    • Middleware System
    • Learning Services
    • Analytics
    • Networking
    • Compute
    • Security
    • Internet Of Things
  • Adobe
  • Matlab
  • Google
  • Visual Paradigm
  • WordPress
    • Plugin WP
    • Themes WP
  • Opensource
  • Others
More Categories Less Categories
  • Get Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • My Account
    • Download
    • Cart
    • Checkout
    • Login
  • About Us
    • Contact
    • Forum
    • Frequently Questions
    • Privacy Policy
  • Forum
    • News
      • Category
      • News Tag

iconTicket Service Desk

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • IBM
  • Visual Paradigm
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Office
      • Windows
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Menu
  • Home
    • Download Application Package Repository Telkom University
    • Application Package Repository Telkom University
    • Download Official License Telkom University
    • Download Installer Application Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • All Pack
    • Microsoft
      • Operating System
      • Productivity Tools
      • Developer Tools
      • Database
      • AI + Machine Learning
      • Middleware System
      • Networking
      • Compute
      • Security
      • Analytics
      • Internet Of Things
      • Learning Services
    • Microsoft Apps
      • VLS
    • Adobe
    • Matlab
    • WordPress
      • Themes WP
      • Plugin WP
    • Google
    • Opensource
    • Others
  • My account
    • Download
    • Get Pack
    • Cart
    • Checkout
  • News
    • Category
    • News Tag
  • Forum
  • About Us
    • Privacy Policy
    • Frequently Questions
    • Contact
Home/Matlab/Error using trainNetwork (line 191) Invalid network.

Error using trainNetwork (line 191) Invalid network.

PuTI / 2025-02-02
Error using trainNetwork (line 191) Invalid network.
Matlab News

I receive the following error for my function given below. .Would you please help me to correct the function?
for the following input

YPred = trainAndPredictHADEL(XTrain, YTrain, XTest);

++
% Function to train and predict using HADEL model
function YPred = trainAndPredictHADEL(XTrain, YTrain, XTest)
% Define HADEL model architecture
numFeatures = size(XTrain, 2);
numClasses = numel(categories(YTrain));

% Feature-Level Attention
featureAttention = [
fullyConnectedLayer(64, ‘Name’, ‘fc_feature_attention’)
reluLayer(‘Name’, ‘relu_feature_attention’)
fullyConnectedLayer(1, ‘Name’, ‘fc_feature_weights’)
softmaxLayer(‘Name’, ‘feature_attention_weights’)
];

% Temporal Attention (not used for Iris dataset, but included for completeness)
temporalAttention = [
sequenceInputLayer(numFeatures, ‘Name’, ‘input_sequence’)
lstmLayer(64, ‘OutputMode’, ‘sequence’, ‘Name’, ‘lstm_temporal_attention’)
fullyConnectedLayer(1, ‘Name’, ‘fc_temporal_weights’)
softmaxLayer(‘Name’, ‘temporal_attention_weights’)
];

% Combine into Hierarchical Attention
%%Bu kısmı hata verdi aşağıdaki gibi koydum
% hierarchicalAttention = [
% featureAttention
% temporalAttention
% dotProductLayer(1, ‘Name’, ‘weighted_output’)
% ];
hierarchicalAttention = [
featureAttention
temporalAttention
];

% Add classification layers
layers = [
hierarchicalAttention
fullyConnectedLayer(64, ‘Name’, ‘fc_final’)
reluLayer(‘Name’, ‘relu_final’)
fullyConnectedLayer(numClasses, ‘Name’, ‘fc_output’)
softmaxLayer(‘Name’, ‘softmax_output’)
classificationLayer(‘Name’, ‘output’)
];

% Train the network
options = trainingOptions(‘adam’, …
‘MaxEpochs’, 50, …
‘MiniBatchSize’, 8, …
‘Verbose’, false);
net = trainNetwork(XTrain, YTrain, layers, options);

% Predict on test data
YPred = classify(net, XTest);
end
++

Error

++
Error using trainNetwork (line 191)
Invalid network.

Error in trainAndPredictHADEL (line 54)
net = trainNetwork(XTrain, YTrain, layers, options);

Caused by:
Layer ‘fc_feature_attention’: Unconnected input. Each layer input must be connected to the output of another layer.
Layer ‘input_sequence’: An input layer must be first in the layer array.
++I receive the following error for my function given below. .Would you please help me to correct the function?
for the following input

YPred = trainAndPredictHADEL(XTrain, YTrain, XTest);

++
% Function to train and predict using HADEL model
function YPred = trainAndPredictHADEL(XTrain, YTrain, XTest)
% Define HADEL model architecture
numFeatures = size(XTrain, 2);
numClasses = numel(categories(YTrain));

% Feature-Level Attention
featureAttention = [
fullyConnectedLayer(64, ‘Name’, ‘fc_feature_attention’)
reluLayer(‘Name’, ‘relu_feature_attention’)
fullyConnectedLayer(1, ‘Name’, ‘fc_feature_weights’)
softmaxLayer(‘Name’, ‘feature_attention_weights’)
];

% Temporal Attention (not used for Iris dataset, but included for completeness)
temporalAttention = [
sequenceInputLayer(numFeatures, ‘Name’, ‘input_sequence’)
lstmLayer(64, ‘OutputMode’, ‘sequence’, ‘Name’, ‘lstm_temporal_attention’)
fullyConnectedLayer(1, ‘Name’, ‘fc_temporal_weights’)
softmaxLayer(‘Name’, ‘temporal_attention_weights’)
];

% Combine into Hierarchical Attention
%%Bu kısmı hata verdi aşağıdaki gibi koydum
% hierarchicalAttention = [
% featureAttention
% temporalAttention
% dotProductLayer(1, ‘Name’, ‘weighted_output’)
% ];
hierarchicalAttention = [
featureAttention
temporalAttention
];

% Add classification layers
layers = [
hierarchicalAttention
fullyConnectedLayer(64, ‘Name’, ‘fc_final’)
reluLayer(‘Name’, ‘relu_final’)
fullyConnectedLayer(numClasses, ‘Name’, ‘fc_output’)
softmaxLayer(‘Name’, ‘softmax_output’)
classificationLayer(‘Name’, ‘output’)
];

% Train the network
options = trainingOptions(‘adam’, …
‘MaxEpochs’, 50, …
‘MiniBatchSize’, 8, …
‘Verbose’, false);
net = trainNetwork(XTrain, YTrain, layers, options);

% Predict on test data
YPred = classify(net, XTest);
end
++

Error

++
Error using trainNetwork (line 191)
Invalid network.

Error in trainAndPredictHADEL (line 54)
net = trainNetwork(XTrain, YTrain, layers, options);

Caused by:
Layer ‘fc_feature_attention’: Unconnected input. Each layer input must be connected to the output of another layer.
Layer ‘input_sequence’: An input layer must be first in the layer array.
++ I receive the following error for my function given below. .Would you please help me to correct the function?
for the following input

YPred = trainAndPredictHADEL(XTrain, YTrain, XTest);

++
% Function to train and predict using HADEL model
function YPred = trainAndPredictHADEL(XTrain, YTrain, XTest)
% Define HADEL model architecture
numFeatures = size(XTrain, 2);
numClasses = numel(categories(YTrain));

% Feature-Level Attention
featureAttention = [
fullyConnectedLayer(64, ‘Name’, ‘fc_feature_attention’)
reluLayer(‘Name’, ‘relu_feature_attention’)
fullyConnectedLayer(1, ‘Name’, ‘fc_feature_weights’)
softmaxLayer(‘Name’, ‘feature_attention_weights’)
];

% Temporal Attention (not used for Iris dataset, but included for completeness)
temporalAttention = [
sequenceInputLayer(numFeatures, ‘Name’, ‘input_sequence’)
lstmLayer(64, ‘OutputMode’, ‘sequence’, ‘Name’, ‘lstm_temporal_attention’)
fullyConnectedLayer(1, ‘Name’, ‘fc_temporal_weights’)
softmaxLayer(‘Name’, ‘temporal_attention_weights’)
];

% Combine into Hierarchical Attention
%%Bu kısmı hata verdi aşağıdaki gibi koydum
% hierarchicalAttention = [
% featureAttention
% temporalAttention
% dotProductLayer(1, ‘Name’, ‘weighted_output’)
% ];
hierarchicalAttention = [
featureAttention
temporalAttention
];

% Add classification layers
layers = [
hierarchicalAttention
fullyConnectedLayer(64, ‘Name’, ‘fc_final’)
reluLayer(‘Name’, ‘relu_final’)
fullyConnectedLayer(numClasses, ‘Name’, ‘fc_output’)
softmaxLayer(‘Name’, ‘softmax_output’)
classificationLayer(‘Name’, ‘output’)
];

% Train the network
options = trainingOptions(‘adam’, …
‘MaxEpochs’, 50, …
‘MiniBatchSize’, 8, …
‘Verbose’, false);
net = trainNetwork(XTrain, YTrain, layers, options);

% Predict on test data
YPred = classify(net, XTest);
end
++

Error

++
Error using trainNetwork (line 191)
Invalid network.

Error in trainAndPredictHADEL (line 54)
net = trainNetwork(XTrain, YTrain, layers, options);

Caused by:
Layer ‘fc_feature_attention’: Unconnected input. Each layer input must be connected to the output of another layer.
Layer ‘input_sequence’: An input layer must be first in the layer array.
++ function, neural networks MATLAB Answers — New Questions

​

Tags: matlab

Share this!

Related posts

How to debug C# .NET assembly called from MATLAB?
2025-05-15

How to debug C# .NET assembly called from MATLAB?

How do I set the size of a tile from tiledlayout?
2025-05-15

How do I set the size of a tile from tiledlayout?

Communicate with worker through client
2025-05-15

Communicate with worker through client

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Search

Categories

  • Matlab
  • Microsoft
  • News
  • Other
Application Package Repository Telkom University

Tags

matlab microsoft opensources
Application Package Download License

Application Package Download License

Adobe
Google for Education
IBM
Matlab
Microsoft
Wordpress
Visual Paradigm
Opensource

Sign Up For Newsletters

Be the First to Know. Sign up for newsletter today

Application Package Repository Telkom University

Portal Application Package Repository Telkom University, for internal use only, empower civitas academica in study and research.

Information

  • Telkom University
  • About Us
  • Contact
  • Forum Discussion
  • FAQ
  • Helpdesk Ticket

Contact Us

  • Ask: Any question please read FAQ
  • Mail: helpdesk@telkomuniversity.ac.id
  • Call: +62 823-1994-9941
  • WA: +62 823-1994-9943
  • Site: Gedung Panambulai. Jl. Telekomunikasi

Copyright © Telkom University. All Rights Reserved. ch

  • FAQ
  • Privacy Policy
  • Term

This Application Package for internal Telkom University only (students and employee). Chiers... Dismiss