Email: [email protected]

This Portal for internal use only!

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • IBM
  • Visual Paradigm
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Office
      • Windows
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Categories
  • Microsoft
    • Microsoft Apps
    • Office
    • Operating System
    • VLS
    • Developer Tools
    • Productivity Tools
    • Database
    • AI + Machine Learning
    • Middleware System
    • Learning Services
    • Analytics
    • Networking
    • Compute
    • Security
    • Internet Of Things
  • Adobe
  • Matlab
  • Google
  • Visual Paradigm
  • WordPress
    • Plugin WP
    • Themes WP
  • Opensource
  • Others
More Categories Less Categories
  • Get Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • My Account
    • Download
    • Cart
    • Checkout
    • Login
  • About Us
    • Contact
    • Forum
    • Frequently Questions
    • Privacy Policy
  • Forum
    • News
      • Category
      • News Tag

iconTicket Service Desk

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • IBM
  • Visual Paradigm
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Office
      • Windows
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Menu
  • Home
    • Download Application Package Repository Telkom University
    • Application Package Repository Telkom University
    • Download Official License Telkom University
    • Download Installer Application Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • All Pack
    • Microsoft
      • Operating System
      • Productivity Tools
      • Developer Tools
      • Database
      • AI + Machine Learning
      • Middleware System
      • Networking
      • Compute
      • Security
      • Analytics
      • Internet Of Things
      • Learning Services
    • Microsoft Apps
      • VLS
    • Adobe
    • Matlab
    • WordPress
      • Themes WP
      • Plugin WP
    • Google
    • Opensource
    • Others
  • My account
    • Download
    • Get Pack
    • Cart
    • Checkout
  • News
    • Category
    • News Tag
  • Forum
  • About Us
    • Privacy Policy
    • Frequently Questions
    • Contact
Home/Matlab/Finding roots of a complex function

Finding roots of a complex function

PuTI / 2025-06-17
Finding roots of a complex function
Matlab News

Hi,
I’m trying to find the roots of a complex function z=x+iyz in MATLAB. However, it seems that the root-finding routine is missing some roots, which leads to inaccurate results. Could you advise on how I can improve the code to ensure more reliable root detection? I have the two matlab files.
Thanks,
clearvars
close all

% set parameter values
pars.gamma1=0.1093;
pars.alpha3=-0.1104e-2;
pars.K1=6e-12;
pars.d=0.2e-3;
pars.eta1=0.240e-1;
pars.chia=1.219e-6;
pars.alpha=1-pars.alpha3^2/(pars.gamma1*pars.eta1);
pars.Ha=pi*sqrt(pars.K1/pars.chia)/pars.d;

% set lists of u (field) and xi (activity) values
uvals=0:0.05:3;
xivals=-0.3:0.01:0.3;

nu=length(uvals);
nxi=length(xivals);

% initiate arrays for output
taumin=ones(nu,nxi);
wavenummin=ones(nu,nxi);

% start timer
tic
disp(‘Starting u and xi loops’);

% start loop around u values
for i=1:nu

pars.H=uvals(i)*pars.Ha;

% start loop around xi value
for j=1:nxi

xi=xivals(j);

% set initial tau values for root finding, tau is a complex
% variable
tauRvals=-50:0.1:50;
tauIvals=0.1*ones(size(tauRvals));
ntau=length(tauRvals);

% plot equation (projected onto real line) to solve for these values of u and xi
fig1 = figure(1);
y=zeros(size(tauRvals));
for ii=1:ntau
tau=tauRvals(ii);
y(ii) = (pars.H ^ 2 * sin(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d) * pars.chia * pars.d * tau ^ (0.3e1 / 0.2e1) * sqrt(pars.eta1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) + sin(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d) * pars.d * pars.gamma1 * sqrt(pars.eta1) * sqrt(tau) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) – 0.2e1 * sqrt(pars.K1) * cos(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d) * pars.alpha3 * tau ^ 2 * xi + 0.2e1 * sqrt(pars.K1) * cos(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d) * pars.alpha3 ^ 2 * tau + 0.2e1 * sqrt(pars.K1) * pars.alpha3 * tau ^ 2 * xi – 0.2e1 * sqrt(pars.K1) * pars.alpha3 ^ 2 * tau) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.3e1 / 0.2e1) * (pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) ^ (-0.1e1 / 0.2e1) / pars.alpha3 / sin(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d);
end
plot(tauRvals,y);
hold on
plot(tauRvals,zeros(size(tauRvals)),’-k’);
xline(0);
yline(0);
xlabel(‘tau’);
ylabel(‘tau equation’);
axis([min(tauRvals) max(tauRvals) -1e-2 1e-2]);
drawnow
hold off

% loop around initial tau values for root finding
tausol=zeros(1,ntau);
flag=zeros(1,ntau);
wavenum=zeros(1,ntau);
for k=1:ntau

% set function, options and inital tau value
fun = @(x)rootsolver_complex(x,xi,pars);
options = optimset(‘TolFun’,1e-15,’MaxFunEvals’,1e5,’Maxiter’,1e5,’Display’,’none’);
tauinit=[tauRvals(k),tauIvals(k)];

% find root of tau equation
[x,fval,exitflag,output] = fsolve(fun,tauinit,options);
% save complex tau solution
tausol(k)=complex(x(1),x(2));
% set solve flag (if exitflag>0 the root finder has solved)
flag(k)=(exitflag>0);
% calulate wavenumber (real part of) using equation from Maple
% file
wavenum(k)=real(sqrt((pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) / pars.K1 / pars.eta1 / tau) * pars.d / pi / 0.2e1);
end

tauflag=[tausol’,flag’];
tausol_found=tauflag(flag==1);
tausolR=real(tausol_found);
tauRvals=tauRvals(flag==1);
wavenum=wavenum(flag==1);

% plot real part of tau solution versus initial tau
fig2 = figure(2);
plot(tauRvals,tausolR,’g-‘)
hold on
plot(tauRvals,tauRvals,’k-‘)
xlabel(‘initial $tau$’, ‘Interpreter’,’latex’);
ylabel(‘$tau$ solution’, ‘Interpreter’,’latex’);

hold off

% calculate min value of real part of tau and the wavenumber at
% that min value of tau
taumin(i,j)=min(tausolR);
wavenummins=wavenum(tausolR==min(tausolR));
wavenummin(i,j)=wavenummins(1);

% filled contour plot of minimum tau value (negative tau means instability)
fig3 = figure(3);
[Xi,U] = meshgrid(xivals,uvals);
N=[0:0.1:1];
map = [0.95*(1-N’) 0.95*(1-N’) N’];
contourf(U,Xi,taumin,[-100:10:100])
colormap(map)
colorbar
xlabel(‘Orienting field, $u$’, ‘Interpreter’,’latex’);
ylabel(‘Activity, $xi$ [Pa]’, ‘Interpreter’,’latex’);
%title(‘minimum tau’);
drawnow

% filled contour plot of minimum tau value (negative tau means instability)
fig4 =figure(4);
contourf(U,Xi,wavenummin,10)
colormap(map)
colorbar
xlabel(‘Orienting field, $u$’, ‘Interpreter’,’latex’);
ylabel(‘Activity, $xi$ [Pa]’, ‘Interpreter’,’latex’);
%title(‘wavenumber at minimum tau’);
drawnow

% stability domain in (u,xi) plane
fig5 = figure(5);
S = 25; % size of symbols in pixels
% normalize colouring vector to go from zero to 1
normtau = (taumin>0);
normtau=reshape(normtau,nu*nxi,1);
C = [0.95*(1-normtau) 0.95*(1-normtau) normtau];
scatter(reshape(U,nu*nxi,1),reshape(Xi,nu*nxi,1),S,C,’filled’,’Marker’,’o’)
xlabel(‘Orienting field, $u$’, ‘Interpreter’,’latex’);
ylabel(‘Activity, $xi$ [Pa]’, ‘Interpreter’,’latex’);
title(‘Blue = stable, Yellow = unstable’, ‘Interpreter’,’latex’);
drawnow

end

% display time taken and percentage complete
toc
disp([‘Progress: ‘ num2str(round(100*(i*(j-1)+j)/(nu*nxi))) ‘ % completed’]);
end

function F = rootsolver_complex(x,xi,pars)
% function to provide right-hand-side of the equation for tau

gamma1=pars.gamma1;
alpha3=pars.alpha3;
K1=pars.K1;
d=pars.d;
eta1=pars.eta1;
chia=pars.chia;
alpha=pars.alpha;
H=pars.H;

tau=complex(x(1),x(2));

% equation taken directly from Maple file eq.mw
y = (H ^ 2 * sin(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) * d) * chia * d * tau ^ (0.3e1 / 0.2e1) * sqrt(eta1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) + sin(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) * d) * d * gamma1 * sqrt(eta1) * sqrt(tau) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) – 0.2e1 * sqrt(K1) * cos(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) * d) * alpha3 * tau ^ 2 * xi + 0.2e1 * sqrt(K1) * cos(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) * d) * alpha3 ^ 2 * tau + 0.2e1 * sqrt(K1) * alpha3 * tau ^ 2 * xi – 0.2e1 * sqrt(K1) * alpha3 ^ 2 * tau) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.3e1 / 0.2e1) * (H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) ^ (-0.1e1 / 0.2e1) / alpha3 / sin(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) * d);
F=[real(y),imag(y)];

endHi,
I’m trying to find the roots of a complex function z=x+iyz in MATLAB. However, it seems that the root-finding routine is missing some roots, which leads to inaccurate results. Could you advise on how I can improve the code to ensure more reliable root detection? I have the two matlab files.
Thanks,
clearvars
close all

% set parameter values
pars.gamma1=0.1093;
pars.alpha3=-0.1104e-2;
pars.K1=6e-12;
pars.d=0.2e-3;
pars.eta1=0.240e-1;
pars.chia=1.219e-6;
pars.alpha=1-pars.alpha3^2/(pars.gamma1*pars.eta1);
pars.Ha=pi*sqrt(pars.K1/pars.chia)/pars.d;

% set lists of u (field) and xi (activity) values
uvals=0:0.05:3;
xivals=-0.3:0.01:0.3;

nu=length(uvals);
nxi=length(xivals);

% initiate arrays for output
taumin=ones(nu,nxi);
wavenummin=ones(nu,nxi);

% start timer
tic
disp(‘Starting u and xi loops’);

% start loop around u values
for i=1:nu

pars.H=uvals(i)*pars.Ha;

% start loop around xi value
for j=1:nxi

xi=xivals(j);

% set initial tau values for root finding, tau is a complex
% variable
tauRvals=-50:0.1:50;
tauIvals=0.1*ones(size(tauRvals));
ntau=length(tauRvals);

% plot equation (projected onto real line) to solve for these values of u and xi
fig1 = figure(1);
y=zeros(size(tauRvals));
for ii=1:ntau
tau=tauRvals(ii);
y(ii) = (pars.H ^ 2 * sin(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d) * pars.chia * pars.d * tau ^ (0.3e1 / 0.2e1) * sqrt(pars.eta1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) + sin(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d) * pars.d * pars.gamma1 * sqrt(pars.eta1) * sqrt(tau) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) – 0.2e1 * sqrt(pars.K1) * cos(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d) * pars.alpha3 * tau ^ 2 * xi + 0.2e1 * sqrt(pars.K1) * cos(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d) * pars.alpha3 ^ 2 * tau + 0.2e1 * sqrt(pars.K1) * pars.alpha3 * tau ^ 2 * xi – 0.2e1 * sqrt(pars.K1) * pars.alpha3 ^ 2 * tau) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.3e1 / 0.2e1) * (pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) ^ (-0.1e1 / 0.2e1) / pars.alpha3 / sin(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d);
end
plot(tauRvals,y);
hold on
plot(tauRvals,zeros(size(tauRvals)),’-k’);
xline(0);
yline(0);
xlabel(‘tau’);
ylabel(‘tau equation’);
axis([min(tauRvals) max(tauRvals) -1e-2 1e-2]);
drawnow
hold off

% loop around initial tau values for root finding
tausol=zeros(1,ntau);
flag=zeros(1,ntau);
wavenum=zeros(1,ntau);
for k=1:ntau

% set function, options and inital tau value
fun = @(x)rootsolver_complex(x,xi,pars);
options = optimset(‘TolFun’,1e-15,’MaxFunEvals’,1e5,’Maxiter’,1e5,’Display’,’none’);
tauinit=[tauRvals(k),tauIvals(k)];

% find root of tau equation
[x,fval,exitflag,output] = fsolve(fun,tauinit,options);
% save complex tau solution
tausol(k)=complex(x(1),x(2));
% set solve flag (if exitflag>0 the root finder has solved)
flag(k)=(exitflag>0);
% calulate wavenumber (real part of) using equation from Maple
% file
wavenum(k)=real(sqrt((pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) / pars.K1 / pars.eta1 / tau) * pars.d / pi / 0.2e1);
end

tauflag=[tausol’,flag’];
tausol_found=tauflag(flag==1);
tausolR=real(tausol_found);
tauRvals=tauRvals(flag==1);
wavenum=wavenum(flag==1);

% plot real part of tau solution versus initial tau
fig2 = figure(2);
plot(tauRvals,tausolR,’g-‘)
hold on
plot(tauRvals,tauRvals,’k-‘)
xlabel(‘initial $tau$’, ‘Interpreter’,’latex’);
ylabel(‘$tau$ solution’, ‘Interpreter’,’latex’);

hold off

% calculate min value of real part of tau and the wavenumber at
% that min value of tau
taumin(i,j)=min(tausolR);
wavenummins=wavenum(tausolR==min(tausolR));
wavenummin(i,j)=wavenummins(1);

% filled contour plot of minimum tau value (negative tau means instability)
fig3 = figure(3);
[Xi,U] = meshgrid(xivals,uvals);
N=[0:0.1:1];
map = [0.95*(1-N’) 0.95*(1-N’) N’];
contourf(U,Xi,taumin,[-100:10:100])
colormap(map)
colorbar
xlabel(‘Orienting field, $u$’, ‘Interpreter’,’latex’);
ylabel(‘Activity, $xi$ [Pa]’, ‘Interpreter’,’latex’);
%title(‘minimum tau’);
drawnow

% filled contour plot of minimum tau value (negative tau means instability)
fig4 =figure(4);
contourf(U,Xi,wavenummin,10)
colormap(map)
colorbar
xlabel(‘Orienting field, $u$’, ‘Interpreter’,’latex’);
ylabel(‘Activity, $xi$ [Pa]’, ‘Interpreter’,’latex’);
%title(‘wavenumber at minimum tau’);
drawnow

% stability domain in (u,xi) plane
fig5 = figure(5);
S = 25; % size of symbols in pixels
% normalize colouring vector to go from zero to 1
normtau = (taumin>0);
normtau=reshape(normtau,nu*nxi,1);
C = [0.95*(1-normtau) 0.95*(1-normtau) normtau];
scatter(reshape(U,nu*nxi,1),reshape(Xi,nu*nxi,1),S,C,’filled’,’Marker’,’o’)
xlabel(‘Orienting field, $u$’, ‘Interpreter’,’latex’);
ylabel(‘Activity, $xi$ [Pa]’, ‘Interpreter’,’latex’);
title(‘Blue = stable, Yellow = unstable’, ‘Interpreter’,’latex’);
drawnow

end

% display time taken and percentage complete
toc
disp([‘Progress: ‘ num2str(round(100*(i*(j-1)+j)/(nu*nxi))) ‘ % completed’]);
end

function F = rootsolver_complex(x,xi,pars)
% function to provide right-hand-side of the equation for tau

gamma1=pars.gamma1;
alpha3=pars.alpha3;
K1=pars.K1;
d=pars.d;
eta1=pars.eta1;
chia=pars.chia;
alpha=pars.alpha;
H=pars.H;

tau=complex(x(1),x(2));

% equation taken directly from Maple file eq.mw
y = (H ^ 2 * sin(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) * d) * chia * d * tau ^ (0.3e1 / 0.2e1) * sqrt(eta1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) + sin(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) * d) * d * gamma1 * sqrt(eta1) * sqrt(tau) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) – 0.2e1 * sqrt(K1) * cos(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) * d) * alpha3 * tau ^ 2 * xi + 0.2e1 * sqrt(K1) * cos(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) * d) * alpha3 ^ 2 * tau + 0.2e1 * sqrt(K1) * alpha3 * tau ^ 2 * xi – 0.2e1 * sqrt(K1) * alpha3 ^ 2 * tau) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.3e1 / 0.2e1) * (H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) ^ (-0.1e1 / 0.2e1) / alpha3 / sin(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) * d);
F=[real(y),imag(y)];

end Hi,
I’m trying to find the roots of a complex function z=x+iyz in MATLAB. However, it seems that the root-finding routine is missing some roots, which leads to inaccurate results. Could you advise on how I can improve the code to ensure more reliable root detection? I have the two matlab files.
Thanks,
clearvars
close all

% set parameter values
pars.gamma1=0.1093;
pars.alpha3=-0.1104e-2;
pars.K1=6e-12;
pars.d=0.2e-3;
pars.eta1=0.240e-1;
pars.chia=1.219e-6;
pars.alpha=1-pars.alpha3^2/(pars.gamma1*pars.eta1);
pars.Ha=pi*sqrt(pars.K1/pars.chia)/pars.d;

% set lists of u (field) and xi (activity) values
uvals=0:0.05:3;
xivals=-0.3:0.01:0.3;

nu=length(uvals);
nxi=length(xivals);

% initiate arrays for output
taumin=ones(nu,nxi);
wavenummin=ones(nu,nxi);

% start timer
tic
disp(‘Starting u and xi loops’);

% start loop around u values
for i=1:nu

pars.H=uvals(i)*pars.Ha;

% start loop around xi value
for j=1:nxi

xi=xivals(j);

% set initial tau values for root finding, tau is a complex
% variable
tauRvals=-50:0.1:50;
tauIvals=0.1*ones(size(tauRvals));
ntau=length(tauRvals);

% plot equation (projected onto real line) to solve for these values of u and xi
fig1 = figure(1);
y=zeros(size(tauRvals));
for ii=1:ntau
tau=tauRvals(ii);
y(ii) = (pars.H ^ 2 * sin(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d) * pars.chia * pars.d * tau ^ (0.3e1 / 0.2e1) * sqrt(pars.eta1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) + sin(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d) * pars.d * pars.gamma1 * sqrt(pars.eta1) * sqrt(tau) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) – 0.2e1 * sqrt(pars.K1) * cos(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d) * pars.alpha3 * tau ^ 2 * xi + 0.2e1 * sqrt(pars.K1) * cos(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d) * pars.alpha3 ^ 2 * tau + 0.2e1 * sqrt(pars.K1) * pars.alpha3 * tau ^ 2 * xi – 0.2e1 * sqrt(pars.K1) * pars.alpha3 ^ 2 * tau) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.3e1 / 0.2e1) * (pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) ^ (-0.1e1 / 0.2e1) / pars.alpha3 / sin(pars.K1 ^ (-0.1e1 / 0.2e1) * pars.eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) * pars.d);
end
plot(tauRvals,y);
hold on
plot(tauRvals,zeros(size(tauRvals)),’-k’);
xline(0);
yline(0);
xlabel(‘tau’);
ylabel(‘tau equation’);
axis([min(tauRvals) max(tauRvals) -1e-2 1e-2]);
drawnow
hold off

% loop around initial tau values for root finding
tausol=zeros(1,ntau);
flag=zeros(1,ntau);
wavenum=zeros(1,ntau);
for k=1:ntau

% set function, options and inital tau value
fun = @(x)rootsolver_complex(x,xi,pars);
options = optimset(‘TolFun’,1e-15,’MaxFunEvals’,1e5,’Maxiter’,1e5,’Display’,’none’);
tauinit=[tauRvals(k),tauIvals(k)];

% find root of tau equation
[x,fval,exitflag,output] = fsolve(fun,tauinit,options);
% save complex tau solution
tausol(k)=complex(x(1),x(2));
% set solve flag (if exitflag>0 the root finder has solved)
flag(k)=(exitflag>0);
% calulate wavenumber (real part of) using equation from Maple
% file
wavenum(k)=real(sqrt((pars.H ^ 2 * pars.chia * pars.eta1 * tau + pars.alpha3 * tau * xi – pars.alpha3 ^ 2 + pars.eta1 * pars.gamma1) / pars.K1 / pars.eta1 / tau) * pars.d / pi / 0.2e1);
end

tauflag=[tausol’,flag’];
tausol_found=tauflag(flag==1);
tausolR=real(tausol_found);
tauRvals=tauRvals(flag==1);
wavenum=wavenum(flag==1);

% plot real part of tau solution versus initial tau
fig2 = figure(2);
plot(tauRvals,tausolR,’g-‘)
hold on
plot(tauRvals,tauRvals,’k-‘)
xlabel(‘initial $tau$’, ‘Interpreter’,’latex’);
ylabel(‘$tau$ solution’, ‘Interpreter’,’latex’);

hold off

% calculate min value of real part of tau and the wavenumber at
% that min value of tau
taumin(i,j)=min(tausolR);
wavenummins=wavenum(tausolR==min(tausolR));
wavenummin(i,j)=wavenummins(1);

% filled contour plot of minimum tau value (negative tau means instability)
fig3 = figure(3);
[Xi,U] = meshgrid(xivals,uvals);
N=[0:0.1:1];
map = [0.95*(1-N’) 0.95*(1-N’) N’];
contourf(U,Xi,taumin,[-100:10:100])
colormap(map)
colorbar
xlabel(‘Orienting field, $u$’, ‘Interpreter’,’latex’);
ylabel(‘Activity, $xi$ [Pa]’, ‘Interpreter’,’latex’);
%title(‘minimum tau’);
drawnow

% filled contour plot of minimum tau value (negative tau means instability)
fig4 =figure(4);
contourf(U,Xi,wavenummin,10)
colormap(map)
colorbar
xlabel(‘Orienting field, $u$’, ‘Interpreter’,’latex’);
ylabel(‘Activity, $xi$ [Pa]’, ‘Interpreter’,’latex’);
%title(‘wavenumber at minimum tau’);
drawnow

% stability domain in (u,xi) plane
fig5 = figure(5);
S = 25; % size of symbols in pixels
% normalize colouring vector to go from zero to 1
normtau = (taumin>0);
normtau=reshape(normtau,nu*nxi,1);
C = [0.95*(1-normtau) 0.95*(1-normtau) normtau];
scatter(reshape(U,nu*nxi,1),reshape(Xi,nu*nxi,1),S,C,’filled’,’Marker’,’o’)
xlabel(‘Orienting field, $u$’, ‘Interpreter’,’latex’);
ylabel(‘Activity, $xi$ [Pa]’, ‘Interpreter’,’latex’);
title(‘Blue = stable, Yellow = unstable’, ‘Interpreter’,’latex’);
drawnow

end

% display time taken and percentage complete
toc
disp([‘Progress: ‘ num2str(round(100*(i*(j-1)+j)/(nu*nxi))) ‘ % completed’]);
end

function F = rootsolver_complex(x,xi,pars)
% function to provide right-hand-side of the equation for tau

gamma1=pars.gamma1;
alpha3=pars.alpha3;
K1=pars.K1;
d=pars.d;
eta1=pars.eta1;
chia=pars.chia;
alpha=pars.alpha;
H=pars.H;

tau=complex(x(1),x(2));

% equation taken directly from Maple file eq.mw
y = (H ^ 2 * sin(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) * d) * chia * d * tau ^ (0.3e1 / 0.2e1) * sqrt(eta1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) + sin(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) * d) * d * gamma1 * sqrt(eta1) * sqrt(tau) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) – 0.2e1 * sqrt(K1) * cos(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) * d) * alpha3 * tau ^ 2 * xi + 0.2e1 * sqrt(K1) * cos(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) * d) * alpha3 ^ 2 * tau + 0.2e1 * sqrt(K1) * alpha3 * tau ^ 2 * xi – 0.2e1 * sqrt(K1) * alpha3 ^ 2 * tau) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.3e1 / 0.2e1) * (H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) ^ (-0.1e1 / 0.2e1) / alpha3 / sin(K1 ^ (-0.1e1 / 0.2e1) * eta1 ^ (-0.1e1 / 0.2e1) * tau ^ (-0.1e1 / 0.2e1) * sqrt(H ^ 2 * chia * eta1 * tau + alpha3 * tau * xi – alpha3 ^ 2 + eta1 * gamma1) * d);
F=[real(y),imag(y)];

end roots finding, complex finding MATLAB Answers — New Questions

​

Tags: matlab

Share this!

Related posts

Random Forest with paired observations: how to maintain subject separation
2025-07-08

Random Forest with paired observations: how to maintain subject separation

Why is uiaxes small by default in a uifigure?
2025-07-08

Why is uiaxes small by default in a uifigure?

For the trainNetwork function, progress plots for training are not closing, except if done manually. How do I close it? I have tried close all, close force, close(fig), & more
2025-07-08

For the trainNetwork function, progress plots for training are not closing, except if done manually. How do I close it? I have tried close all, close force, close(fig), & more

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Search

Categories

  • Matlab
  • Microsoft
  • News
  • Other
Application Package Repository Telkom University

Tags

matlab microsoft opensources
Application Package Download License

Application Package Download License

Adobe
Google for Education
IBM
Matlab
Microsoft
Wordpress
Visual Paradigm
Opensource

Sign Up For Newsletters

Be the First to Know. Sign up for newsletter today

Application Package Repository Telkom University

Portal Application Package Repository Telkom University, for internal use only, empower civitas academica in study and research.

Information

  • Telkom University
  • About Us
  • Contact
  • Forum Discussion
  • FAQ
  • Helpdesk Ticket

Contact Us

  • Ask: Any question please read FAQ
  • Mail: [email protected]
  • Call: +62 823-1994-9941
  • WA: +62 823-1994-9943
  • Site: Gedung Panambulai. Jl. Telekomunikasi

Copyright © Telkom University. All Rights Reserved. ch

  • FAQ
  • Privacy Policy
  • Term