Email: helpdesk@telkomuniversity.ac.id

This Portal for internal use only!

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • Visual Paradigm
  • IBM
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Windows
      • Office
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Categories
  • Microsoft
    • Microsoft Apps
    • Office
    • Operating System
    • VLS
    • Developer Tools
    • Productivity Tools
    • Database
    • AI + Machine Learning
    • Middleware System
    • Learning Services
    • Analytics
    • Networking
    • Compute
    • Security
    • Internet Of Things
  • Adobe
  • Matlab
  • Google
  • Visual Paradigm
  • WordPress
    • Plugin WP
    • Themes WP
  • Opensource
  • Others
More Categories Less Categories
  • Get Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • My Account
    • Download
    • Cart
    • Checkout
    • Login
  • About Us
    • Contact
    • Forum
    • Frequently Questions
    • Privacy Policy
  • Forum
    • News
      • Category
      • News Tag

iconTicket Service Desk

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • Visual Paradigm
  • IBM
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Windows
      • Office
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Menu
  • Home
    • Download Application Package Repository Telkom University
    • Application Package Repository Telkom University
    • Download Official License Telkom University
    • Download Installer Application Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • All Pack
    • Microsoft
      • Operating System
      • Productivity Tools
      • Developer Tools
      • Database
      • AI + Machine Learning
      • Middleware System
      • Networking
      • Compute
      • Security
      • Analytics
      • Internet Of Things
      • Learning Services
    • Microsoft Apps
      • VLS
    • Adobe
    • Matlab
    • WordPress
      • Themes WP
      • Plugin WP
    • Google
    • Opensource
    • Others
  • My account
    • Download
    • Get Pack
    • Cart
    • Checkout
  • News
    • Category
    • News Tag
  • Forum
  • About Us
    • Privacy Policy
    • Frequently Questions
    • Contact
Home/Matlab/Group Dela of Linkwitz Riley High-, Low, and Bandpass Filter

Group Dela of Linkwitz Riley High-, Low, and Bandpass Filter

PuTI / 2025-03-01
Group Dela of Linkwitz Riley High-, Low, and Bandpass Filter
Matlab News

Hello,
I am an electrical engineering student currently working on analog filters, specifically cascaded Butterworth filter approximations, also known as Linkwitz-Riley filters.
In my MATLAB code, I generate bandpass filters from individual high-pass and low-pass filters, which together form a crossover network.
I want to plot the group delay of the high-pass and low-pass filters, as well as the total group delay of the crossover network.
However, when implementing this, only the group delay plot of the high-pass filter seems to make sense.
My calculations for the high-pass and low-pass filters are as follows.
Lowpass:

Groupdelay:

Highpass:

Groupdelay

After calculating the individual filters, I combined them into a crossover network, as shown in the following MATLAB code.

In my opinion, the group delay plot of the bandpass should look like this:
(from https://www.rfcafe.com/references/electrical/butterworth-highpass-bandpass-bandstop-filter-gain-phase-group-delay-equations.htm)

My calculations result in the following Bode diagram and the corresponding group delay plot.

What am I doing wrong?
Thanks in advance for any help!
Matlab Code:

omega_r1 = 2.*pi.*30;
omega_r2 = 2.*pi.*150;
omega_r3 = 2.*pi.*800;
omega_r4 = 2.*pi.*4E3;
omega_r5 = 2.*pi.*20E3;
Q = 0.7101 ;
f = logspace(-1, 5, 1000);
omega = 2 * pi * f;
s=1i.*omega;
%LRTP1 = LInkwitz Riley Lowpass 1
C_1 = 10E-6;
C_2 = 20.0164E-6;
R_1 = 1/(omega_r2*sqrt(C_1*C_2));
H_tp1 = 1 ./ (1 – (omega.^2 ./ omega_r2^2) + (s ./ (Q .* omega_r2)));
H_tp2 = 1 ./ (1 – (omega.^2 ./ omega_r2^2) + (s ./ (Q .* omega_r2)));
magnitude_LRTP1 = 1 ./ sqrt((1 – (omega.^2 ./ omega_r2.^2)).^2 + (omega ./ (Q .* omega_r2)).^2)…
.*1 ./ sqrt((1 – (omega.^2 ./ omega_r2.^2)).^2 + (omega ./ (Q .* omega_r2)).^2);
phase_LRTP1 = -atan2(omega./(Q.*omega_r2),1-(omega.^2./omega_r2.^2))-atan2(omega./(Q.*omega_r2),1-(omega.^2./omega_r2.^2));
norm_groupdelay_LRTP1 = 1/(2*pi).*(2 * Q * (omega.^2 ./ omega_r2.^2 + 1)) ./ (Q.^2 .* (omega.^4 ./ omega_r2.^4) + (1 – 2 * Q.^2) .* (omega.^2 ./ omega_r2.^2) + Q.^2);
groupdelay_LRTP1= (2 .* Q .* omega_r2 .* (omega.^2 + omega_r2.^2)) ./ (Q.^2 .* omega.^4 + (1 – 2 .* Q.^2) .* omega_r2.^2 .* omega.^2 + Q.^2 .* omega_r2.^4);
%LRTP2 = LInkwitz Riley Lowpass 2
C_4 = 10E-6;
C_5 = 20.0164E-6;
R_4 = 1/(omega_r3*sqrt(C_4*C_5));
H_tp3 = 1 ./ (1 – (omega.^2 ./ omega_r3^2) + (s ./ (Q .* omega_r3)));
H_tp4 = 1 ./ (1 – (omega.^2 ./ omega_r3^2) + (s ./ (Q .* omega_r3)));
magnitude_LRTP2 = 1 ./ sqrt((1 – (omega.^2 ./ omega_r3.^2)).^2 + (omega ./ (Q .* omega_r3)).^2)…
.*1 ./ sqrt((1 – (omega.^2 ./ omega_r3.^2)).^2 + (omega ./ (Q .* omega_r3)).^2);
phase_LRTP2 = -atan2(omega./(Q.*omega_r3),1-(omega.^2./omega_r3.^2))-atan2(omega./(Q.*omega_r3),1-(omega.^2./omega_r3.^2));
norm_groupdelay_LRTP2 = 1/(2*pi).*(2 * Q * (omega.^2 ./ omega_r3.^2 + 1)) ./ (Q.^2 .* (omega.^4 ./ omega_r3.^4) + (1 – 2 * Q.^2) .* (omega.^2 ./ omega_r3.^2) + Q.^2);
groupdelay_LRTP2= (2 .* Q .* omega_r3 .* (omega.^2 + omega_r3.^2)) ./ (Q.^2 .* omega.^4 + (1 – 2 .* Q.^2) .* omega_r3.^2 .* omega.^2 + Q.^2 .* omega_r3.^4);
%LRTP3 = LInkwitz Riley Lowpass 3
C_7 = 10E-6;
C_8 = 20.0164E-6;
R_7 = 1/(omega_r4*sqrt(C_7*C_8));
H_tp5 = 1 ./ (1 – (omega.^2 ./ omega_r4^2) + (s ./ (Q .* omega_r4)));
H_tp6 = 1 ./ (1 – (omega.^2 ./ omega_r4^2) + (s ./ (Q .* omega_r4)));
magnitude_LRTP3 = 1 ./ sqrt((1 – (omega.^2 ./ omega_r4.^2)).^2 + (omega ./ (Q .* omega_r4)).^2)…
.*1 ./ sqrt((1 – (omega.^2 ./ omega_r4.^2)).^2 + (omega ./ (Q .* omega_r4)).^2);
phase_LRTP3 = -atan2(omega./(Q.*omega_r4),1-(omega.^2./omega_r4.^2))-atan2(omega./(Q.*omega_r4),1-(omega.^2./omega_r4.^2));
norm_groupdelay_LRTP3 = 1/(2*pi).*(2 * Q * (omega.^2 ./ omega_r4.^2 + 1)) ./ (Q.^2 .* (omega.^4 ./ omega_r4.^4) + (1 – 2 * Q.^2) .* (omega.^2 ./ omega_r4.^2) + Q.^2);
groupdelay_LRTP3= (2 .* Q .* omega_r4 .* (omega.^2 + omega_r4.^2)) ./ (Q^2 .* omega.^4 + (1 – 2 .* Q.^2) .* omega_r4.^2 .* omega.^2 + Q.^2 .* omega_r4.^4);
%LRTP4 = LInkwitz Riley Lowpass 4
C_10 = 10E-6;
C_11 = 20.0164E-6;
R_10 = 1/(omega_r5*sqrt(C_10*C_11));
H_tp7 = 1 ./ (1 – (omega.^2 ./ omega_r5^2) + (s ./ (Q .* omega_r5)));
H_tp8 = 1 ./ (1 – (omega.^2 ./ omega_r5^2) + (s ./ (Q .* omega_r5)));
magnitude_LRTP4 = 1 ./ sqrt((1 – (omega.^2 ./ omega_r5.^2)).^2 + (omega ./ (Q .* omega_r5)).^2)…
.*1 ./ sqrt((1 – (omega.^2 ./ omega_r5.^2)).^2 + (omega ./ (Q .* omega_r5)).^2);
phase_LRTP4 = -atan2(omega./(Q.*omega_r5),1-(omega.^2./omega_r5.^2))-atan2(omega./(Q.*omega_r5),1-(omega.^2./omega_r5.^2));
norm_groupdelay_LRTP4 = 1/(2*pi).*(2 * Q * (omega.^2 ./ omega_r5.^2 + 1)) ./ (Q.^2 .* (omega.^4 ./ omega_r5.^4) + (1 – 2 * Q.^2) .* (omega.^2 ./ omega_r5.^2) + Q.^2);
groupdelay_LRTP4= (2 .* Q .* omega_r5 .* (omega.^2 + omega_r5.^2)) ./ (Q.^2 .* omega.^4 + (1 – 2 .* Q.^2) .* omega_r5.^2 .* omega.^2 + Q.^2 .* omega_r5.^4);
figure;
subplot(2, 1, 1);
semilogx(f, 20*log10(magnitude_LRTP1));
hold on
semilogx(f, 20*log10(magnitude_LRTP2));
semilogx(f, 20*log10(magnitude_LRTP3));
semilogx(f, 20*log10(magnitude_LRTP4));
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘Amplitude’);
title(‘LRTP’, ‘Interpreter’, ‘latex’);
subplot(2, 1, 2);
semilogx(f, rad2deg(phase_LRTP1));
hold on
semilogx(f, rad2deg(phase_LRTP2));
semilogx(f, rad2deg(phase_LRTP3));
semilogx(f, rad2deg(phase_LRTP4));
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘Phase (Grad)’);
figure;
semilogx(f, groupdelay_LRTP1);
hold on
semilogx(f, groupdelay_LRTP2);
semilogx(f, groupdelay_LRTP3);
semilogx(f, groupdelay_LRTP4);
grid on;
xlabel(‘$omega$’, ‘Interpreter’, ‘latex’);
ylabel(‘groupdelay’);
title(‘LRTP’, ‘Interpreter’, ‘latex’);
%LRHP1 = LInkwitz Riley Highpass 1
R_2 = 10E3;
R_3 = 20.0164E3;
C_3 = 1/(omega_r1*sqrt(R_2*R_3));
H_hp1 = (Q .* (s ./ omega_r1)) ./ (1 + Q .* ((s ./ omega_r1) + (omega_r1 ./ s)));
H_hp2 = (Q .* (s ./ omega_r1)) ./ (1 + Q .* ((s ./ omega_r1) + (omega_r1 ./ s)));
magnitude_LRHP1 = (Q .* (omega ./ omega_r1)) ./ sqrt(1 + (Q .* ((omega ./ omega_r1) – (omega_r1 ./ omega))).^2)…
.*(Q .* (omega ./ omega_r1)) ./ sqrt(1 + (Q .* ((omega ./ omega_r1) – (omega_r1 ./ omega))).^2);
phase_LRHP1 = -atan2(Q.*omega./omega_r1-Q.*omega_r1./omega,1)+pi./2-atan2(Q.*omega./omega_r1-Q.*omega_r1./omega,1)+pi./2;
norm_groupdelay_LRHP1 = 1/(2*pi) .* (2 .* (Q ./ (omega ./ omega_r1).^2 + Q)) ./ ((Q .* (omega ./ omega_r1) – Q ./ (omega ./ omega_r1)).^2 + 1);
groupdelay_LRHP1= (2 .* (Q .* omega_r1 ./ omega.^2 + Q ./ omega_r1)) ./ ((Q .* omega ./ omega_r1 – Q .* omega_r1 ./ omega).^2 + 1);
%LRHP2 = LInkwitz Riley Highpass 2
R_5 = 10E3;
R_6 = 20.0164E3;
C_6 = 1/(omega_r2*sqrt(R_5*R_6));
H_hp3 = (Q .* (s ./ omega_r2)) ./ (1 + Q .* ((s ./ omega_r2) + (omega_r2 ./ s)));
H_hp4 = (Q .* (s ./ omega_r2)) ./ (1 + Q .* ((s ./ omega_r2) + (omega_r2 ./ s)));
magnitude_LRHP2 = (Q .* (omega ./ omega_r2)) ./ sqrt(1 + (Q .* ((omega ./ omega_r2) – (omega_r2 ./ omega))).^2)…
.*(Q .* (omega ./ omega_r2)) ./ sqrt(1 + (Q .* ((omega ./ omega_r2) – (omega_r2 ./ omega))).^2);
phase_LRHP2 = -atan2(Q.*omega./omega_r2-Q.*omega_r2./omega,1)+pi./2-atan2(Q.*omega./omega_r2-Q.*omega_r2./omega,1)+pi./2;
norm_groupdelay_LRHP2 = 1/(2*pi) .* (2 .* (Q ./ (omega ./ omega_r2).^2 + Q)) ./ ((Q .* (omega ./ omega_r2) – Q ./ (omega ./ omega_r2)).^2 + 1);
groupdelay_LRHP2= (2 .* (Q .* omega_r2 ./ omega.^2 + Q ./ omega_r2)) ./ ((Q .* omega ./ omega_r2 – Q .* omega_r2 ./ omega).^2 + 1);
%LRHP3 = LInkwitz Riley Highpass 3
R_8 = 10E3;
R_9 = 20.0164E3;
C_9 = 1/(omega_r3*sqrt(R_8*R_9));
H_hp5 = (Q .* (s ./ omega_r3)) ./ (1 + Q .* ((s ./ omega_r3) + (omega_r3 ./ s)));
H_hp6 = (Q .* (s ./ omega_r3)) ./ (1 + Q .* ((s ./ omega_r3) + (omega_r3 ./ s)));
magnitude_LRHP3 = (Q .* (omega ./ omega_r3)) ./ sqrt(1 + (Q .* ((omega ./ omega_r3) – (omega_r3 ./ omega))).^2)…
.*(Q .* (omega ./ omega_r3)) ./ sqrt(1 + (Q .* ((omega ./ omega_r3) – (omega_r3 ./ omega))).^2);
phase_LRHP3 = -atan2(Q.*omega./omega_r3-Q.*omega_r3./omega,1)+pi./2-atan2(Q.*omega./omega_r3-Q.*omega_r3./omega,1)+pi./2;
norm_groupdelay_LRHP3 = 1/(2*pi) .* (2 .* (Q ./ (omega ./ omega_r3).^2 + Q)) ./ ((Q .* (omega ./ omega_r3) – Q ./ (omega ./ omega_r3)).^2 + 1);
groupdelay_LRHP3= (2 .* (Q .* omega_r3 ./ omega.^2 + Q ./ omega_r3)) ./ ((Q .* omega ./ omega_r3 – Q .* omega_r3 ./ omega).^2 + 1);
%LRHP4 = LInkwitz Riley Highpass 4
R_11 = 10E3;
R_12 = 20.0164E3;
C_12 = 1/(omega_r4*sqrt(R_11*R_12));
H_hp7 = (Q .* (s ./ omega_r4)) ./ (1 + Q .* ((s ./ omega_r4) + (omega_r4 ./ s)));
H_hp8 = (Q .* (s ./ omega_r4)) ./ (1 + Q .* ((s ./ omega_r4) + (omega_r4 ./ s)));
magnitude_LRHP4 = (Q .* (omega ./ omega_r4)) ./ sqrt(1 + (Q .* ((omega ./ omega_r4) – (omega_r4 ./ omega))).^2)…
.*(Q .* (omega ./ omega_r4)) ./ sqrt(1 + (Q .* ((omega ./ omega_r4) – (omega_r4 ./ omega))).^2);
phase_LRHP4 = -atan2(Q.*omega./omega_r4-Q.*omega_r4./omega,1)+pi./2-atan2(Q.*omega./omega_r4-Q.*omega_r4./omega,1)+pi./2;
norm_groupdelay_LRHP4 = 1/(2*pi) .* (2 .* (Q ./ (omega ./ omega_r4).^2 + Q)) ./ ((Q .* (omega ./ omega_r4) – Q ./ (omega ./ omega_r4)).^2 + 1);
groupdelay_LRHP4= (2 .* (Q .* omega_r4 ./ omega.^2 + Q ./ omega_r4)) ./ ((Q .* omega ./ omega_r4 – Q .* omega_r4 ./ omega).^2 + 1);
figure;
subplot(2, 1, 1);
semilogx(f, 20*log10(magnitude_LRHP1));
hold on
semilogx(f, 20*log10(magnitude_LRHP2));
semilogx(f, 20*log10(magnitude_LRHP3));
semilogx(f, 20*log10(magnitude_LRHP4));
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘Amplitude’);
title(‘LRHP’, ‘Interpreter’, ‘latex’);
% Plot für die Phase (in Grad)
subplot(2, 1, 2);
semilogx(f, rad2deg(phase_LRHP1));
hold on
semilogx(f, rad2deg(phase_LRHP2));
semilogx(f, rad2deg(phase_LRHP3));
semilogx(f, rad2deg(phase_LRHP4));
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘Phase (Grad)’);
figure;
% Plot für die groupdelay
semilogx(f, groupdelay_LRHP1);
hold on
semilogx(f, groupdelay_LRHP2);
semilogx(f, groupdelay_LRHP3);
semilogx(f, groupdelay_LRHP4);
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘groupdelay’);
title(‘LRHP’, ‘Interpreter’, ‘latex’);
%LRBP1 = LInkwitz Riley Bandpass 1
magnitude_LRBP1 = magnitude_LRHP1.*magnitude_LRTP1;
phase_LRBP1 = phase_LRHP1+phase_LRTP1;
groupdelay_LRBP1 = groupdelay_LRTP1+groupdelay_LRHP1;
%Same result:
%groupdelay_LRBP1 = -gradient(phase_LRBP1) ./ gradient(omega);
%LRBP1 = LInkwitz Riley Bandpass 2
magnitude_LRBP2 = magnitude_LRHP2.*magnitude_LRTP2;
phase_LRBP2 = phase_LRHP2+phase_LRTP2;
groupdelay_LRBP2 = groupdelay_LRTP2+groupdelay_LRHP2;
%Same result:
%groupdelay_LRBP2 = -gradient(phase_LRBP2) ./ gradient(omega);
%LRBP1 = LInkwitz Riley Bandpass 3
magnitude_LRBP3 = magnitude_LRHP3.*magnitude_LRTP3;
phase_LRBP3 = phase_LRHP3+phase_LRTP3;
groupdelay_LRBP3 = groupdelay_LRTP3+groupdelay_LRHP3;
%Same result:
%groupdelay_LRBP3 = -gradient(phase_LRBP3) ./ gradient(omega);
%LRBP1 = LInkwitz Riley Bandpass 4
magnitude_LRBP4 = magnitude_LRHP4.*magnitude_LRTP4;
phase_LRBP4 = phase_LRHP4+phase_LRTP4;
groupdelay_LRBP4 = groupdelay_LRTP4+groupdelay_LRHP4;
%Same result:
%groupdelay_LRBP4 = -gradient(phase_LRBP4) ./ gradient(omega);
%LRBP1 = LInkwitz Riley Bandpass_ges
magnitude_LRBP_ges = magnitude_LRBP1+magnitude_LRBP2+magnitude_LRBP3+magnitude_LRBP4;
phase_LRBP_ges = phase_LRBP1+phase_LRBP2+phase_LRBP3+phase_LRBP4;
groupdelay_LRBP_ges = groupdelay_LRTP1+groupdelay_LRHP1+groupdelay_LRTP2+groupdelay_LRHP2…
+groupdelay_LRTP3+groupdelay_LRHP3+groupdelay_LRTP4+groupdelay_LRHP4;
%Same result:
%groupdelay_LRBP_ges = -gradient(phase_LRBP2) ./ gradient(omega);
figure;
subplot(2, 1, 1);
semilogx(f, 20*log10(magnitude_LRBP1));
hold on
semilogx(f, 20*log10(magnitude_LRBP2));
semilogx(f, 20*log10(magnitude_LRBP3));
semilogx(f, 20*log10(magnitude_LRBP4));
semilogx(f, 20*log10(magnitude_LRBP_ges));
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘Amplitude’);
title(‘LRBP’, ‘Interpreter’, ‘latex’);
% Plot für die Phase (in Grad)
subplot(2, 1, 2);
semilogx(f, rad2deg(phase_LRBP1));
hold on
semilogx(f, rad2deg(phase_LRBP2));
semilogx(f, rad2deg(phase_LRBP3));
semilogx(f, rad2deg(phase_LRBP4));
semilogx(f, rad2deg(phase_LRBP_ges));
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘Phase (Grad)’);
figure;
% Plot für die groupdelay
semilogx(f, groupdelay_LRBP1);
hold on
semilogx(f, groupdelay_LRBP2);
semilogx(f, groupdelay_LRBP3);
semilogx(f, groupdelay_LRBP4);
semilogx(f, groupdelay_LRBP_ges);
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘groupdelay’);
title(‘LRBP’, ‘Interpreter’, ‘latex’);Hello,
I am an electrical engineering student currently working on analog filters, specifically cascaded Butterworth filter approximations, also known as Linkwitz-Riley filters.
In my MATLAB code, I generate bandpass filters from individual high-pass and low-pass filters, which together form a crossover network.
I want to plot the group delay of the high-pass and low-pass filters, as well as the total group delay of the crossover network.
However, when implementing this, only the group delay plot of the high-pass filter seems to make sense.
My calculations for the high-pass and low-pass filters are as follows.
Lowpass:

Groupdelay:

Highpass:

Groupdelay

After calculating the individual filters, I combined them into a crossover network, as shown in the following MATLAB code.

In my opinion, the group delay plot of the bandpass should look like this:
(from https://www.rfcafe.com/references/electrical/butterworth-highpass-bandpass-bandstop-filter-gain-phase-group-delay-equations.htm)

My calculations result in the following Bode diagram and the corresponding group delay plot.

What am I doing wrong?
Thanks in advance for any help!
Matlab Code:

omega_r1 = 2.*pi.*30;
omega_r2 = 2.*pi.*150;
omega_r3 = 2.*pi.*800;
omega_r4 = 2.*pi.*4E3;
omega_r5 = 2.*pi.*20E3;
Q = 0.7101 ;
f = logspace(-1, 5, 1000);
omega = 2 * pi * f;
s=1i.*omega;
%LRTP1 = LInkwitz Riley Lowpass 1
C_1 = 10E-6;
C_2 = 20.0164E-6;
R_1 = 1/(omega_r2*sqrt(C_1*C_2));
H_tp1 = 1 ./ (1 – (omega.^2 ./ omega_r2^2) + (s ./ (Q .* omega_r2)));
H_tp2 = 1 ./ (1 – (omega.^2 ./ omega_r2^2) + (s ./ (Q .* omega_r2)));
magnitude_LRTP1 = 1 ./ sqrt((1 – (omega.^2 ./ omega_r2.^2)).^2 + (omega ./ (Q .* omega_r2)).^2)…
.*1 ./ sqrt((1 – (omega.^2 ./ omega_r2.^2)).^2 + (omega ./ (Q .* omega_r2)).^2);
phase_LRTP1 = -atan2(omega./(Q.*omega_r2),1-(omega.^2./omega_r2.^2))-atan2(omega./(Q.*omega_r2),1-(omega.^2./omega_r2.^2));
norm_groupdelay_LRTP1 = 1/(2*pi).*(2 * Q * (omega.^2 ./ omega_r2.^2 + 1)) ./ (Q.^2 .* (omega.^4 ./ omega_r2.^4) + (1 – 2 * Q.^2) .* (omega.^2 ./ omega_r2.^2) + Q.^2);
groupdelay_LRTP1= (2 .* Q .* omega_r2 .* (omega.^2 + omega_r2.^2)) ./ (Q.^2 .* omega.^4 + (1 – 2 .* Q.^2) .* omega_r2.^2 .* omega.^2 + Q.^2 .* omega_r2.^4);
%LRTP2 = LInkwitz Riley Lowpass 2
C_4 = 10E-6;
C_5 = 20.0164E-6;
R_4 = 1/(omega_r3*sqrt(C_4*C_5));
H_tp3 = 1 ./ (1 – (omega.^2 ./ omega_r3^2) + (s ./ (Q .* omega_r3)));
H_tp4 = 1 ./ (1 – (omega.^2 ./ omega_r3^2) + (s ./ (Q .* omega_r3)));
magnitude_LRTP2 = 1 ./ sqrt((1 – (omega.^2 ./ omega_r3.^2)).^2 + (omega ./ (Q .* omega_r3)).^2)…
.*1 ./ sqrt((1 – (omega.^2 ./ omega_r3.^2)).^2 + (omega ./ (Q .* omega_r3)).^2);
phase_LRTP2 = -atan2(omega./(Q.*omega_r3),1-(omega.^2./omega_r3.^2))-atan2(omega./(Q.*omega_r3),1-(omega.^2./omega_r3.^2));
norm_groupdelay_LRTP2 = 1/(2*pi).*(2 * Q * (omega.^2 ./ omega_r3.^2 + 1)) ./ (Q.^2 .* (omega.^4 ./ omega_r3.^4) + (1 – 2 * Q.^2) .* (omega.^2 ./ omega_r3.^2) + Q.^2);
groupdelay_LRTP2= (2 .* Q .* omega_r3 .* (omega.^2 + omega_r3.^2)) ./ (Q.^2 .* omega.^4 + (1 – 2 .* Q.^2) .* omega_r3.^2 .* omega.^2 + Q.^2 .* omega_r3.^4);
%LRTP3 = LInkwitz Riley Lowpass 3
C_7 = 10E-6;
C_8 = 20.0164E-6;
R_7 = 1/(omega_r4*sqrt(C_7*C_8));
H_tp5 = 1 ./ (1 – (omega.^2 ./ omega_r4^2) + (s ./ (Q .* omega_r4)));
H_tp6 = 1 ./ (1 – (omega.^2 ./ omega_r4^2) + (s ./ (Q .* omega_r4)));
magnitude_LRTP3 = 1 ./ sqrt((1 – (omega.^2 ./ omega_r4.^2)).^2 + (omega ./ (Q .* omega_r4)).^2)…
.*1 ./ sqrt((1 – (omega.^2 ./ omega_r4.^2)).^2 + (omega ./ (Q .* omega_r4)).^2);
phase_LRTP3 = -atan2(omega./(Q.*omega_r4),1-(omega.^2./omega_r4.^2))-atan2(omega./(Q.*omega_r4),1-(omega.^2./omega_r4.^2));
norm_groupdelay_LRTP3 = 1/(2*pi).*(2 * Q * (omega.^2 ./ omega_r4.^2 + 1)) ./ (Q.^2 .* (omega.^4 ./ omega_r4.^4) + (1 – 2 * Q.^2) .* (omega.^2 ./ omega_r4.^2) + Q.^2);
groupdelay_LRTP3= (2 .* Q .* omega_r4 .* (omega.^2 + omega_r4.^2)) ./ (Q^2 .* omega.^4 + (1 – 2 .* Q.^2) .* omega_r4.^2 .* omega.^2 + Q.^2 .* omega_r4.^4);
%LRTP4 = LInkwitz Riley Lowpass 4
C_10 = 10E-6;
C_11 = 20.0164E-6;
R_10 = 1/(omega_r5*sqrt(C_10*C_11));
H_tp7 = 1 ./ (1 – (omega.^2 ./ omega_r5^2) + (s ./ (Q .* omega_r5)));
H_tp8 = 1 ./ (1 – (omega.^2 ./ omega_r5^2) + (s ./ (Q .* omega_r5)));
magnitude_LRTP4 = 1 ./ sqrt((1 – (omega.^2 ./ omega_r5.^2)).^2 + (omega ./ (Q .* omega_r5)).^2)…
.*1 ./ sqrt((1 – (omega.^2 ./ omega_r5.^2)).^2 + (omega ./ (Q .* omega_r5)).^2);
phase_LRTP4 = -atan2(omega./(Q.*omega_r5),1-(omega.^2./omega_r5.^2))-atan2(omega./(Q.*omega_r5),1-(omega.^2./omega_r5.^2));
norm_groupdelay_LRTP4 = 1/(2*pi).*(2 * Q * (omega.^2 ./ omega_r5.^2 + 1)) ./ (Q.^2 .* (omega.^4 ./ omega_r5.^4) + (1 – 2 * Q.^2) .* (omega.^2 ./ omega_r5.^2) + Q.^2);
groupdelay_LRTP4= (2 .* Q .* omega_r5 .* (omega.^2 + omega_r5.^2)) ./ (Q.^2 .* omega.^4 + (1 – 2 .* Q.^2) .* omega_r5.^2 .* omega.^2 + Q.^2 .* omega_r5.^4);
figure;
subplot(2, 1, 1);
semilogx(f, 20*log10(magnitude_LRTP1));
hold on
semilogx(f, 20*log10(magnitude_LRTP2));
semilogx(f, 20*log10(magnitude_LRTP3));
semilogx(f, 20*log10(magnitude_LRTP4));
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘Amplitude’);
title(‘LRTP’, ‘Interpreter’, ‘latex’);
subplot(2, 1, 2);
semilogx(f, rad2deg(phase_LRTP1));
hold on
semilogx(f, rad2deg(phase_LRTP2));
semilogx(f, rad2deg(phase_LRTP3));
semilogx(f, rad2deg(phase_LRTP4));
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘Phase (Grad)’);
figure;
semilogx(f, groupdelay_LRTP1);
hold on
semilogx(f, groupdelay_LRTP2);
semilogx(f, groupdelay_LRTP3);
semilogx(f, groupdelay_LRTP4);
grid on;
xlabel(‘$omega$’, ‘Interpreter’, ‘latex’);
ylabel(‘groupdelay’);
title(‘LRTP’, ‘Interpreter’, ‘latex’);
%LRHP1 = LInkwitz Riley Highpass 1
R_2 = 10E3;
R_3 = 20.0164E3;
C_3 = 1/(omega_r1*sqrt(R_2*R_3));
H_hp1 = (Q .* (s ./ omega_r1)) ./ (1 + Q .* ((s ./ omega_r1) + (omega_r1 ./ s)));
H_hp2 = (Q .* (s ./ omega_r1)) ./ (1 + Q .* ((s ./ omega_r1) + (omega_r1 ./ s)));
magnitude_LRHP1 = (Q .* (omega ./ omega_r1)) ./ sqrt(1 + (Q .* ((omega ./ omega_r1) – (omega_r1 ./ omega))).^2)…
.*(Q .* (omega ./ omega_r1)) ./ sqrt(1 + (Q .* ((omega ./ omega_r1) – (omega_r1 ./ omega))).^2);
phase_LRHP1 = -atan2(Q.*omega./omega_r1-Q.*omega_r1./omega,1)+pi./2-atan2(Q.*omega./omega_r1-Q.*omega_r1./omega,1)+pi./2;
norm_groupdelay_LRHP1 = 1/(2*pi) .* (2 .* (Q ./ (omega ./ omega_r1).^2 + Q)) ./ ((Q .* (omega ./ omega_r1) – Q ./ (omega ./ omega_r1)).^2 + 1);
groupdelay_LRHP1= (2 .* (Q .* omega_r1 ./ omega.^2 + Q ./ omega_r1)) ./ ((Q .* omega ./ omega_r1 – Q .* omega_r1 ./ omega).^2 + 1);
%LRHP2 = LInkwitz Riley Highpass 2
R_5 = 10E3;
R_6 = 20.0164E3;
C_6 = 1/(omega_r2*sqrt(R_5*R_6));
H_hp3 = (Q .* (s ./ omega_r2)) ./ (1 + Q .* ((s ./ omega_r2) + (omega_r2 ./ s)));
H_hp4 = (Q .* (s ./ omega_r2)) ./ (1 + Q .* ((s ./ omega_r2) + (omega_r2 ./ s)));
magnitude_LRHP2 = (Q .* (omega ./ omega_r2)) ./ sqrt(1 + (Q .* ((omega ./ omega_r2) – (omega_r2 ./ omega))).^2)…
.*(Q .* (omega ./ omega_r2)) ./ sqrt(1 + (Q .* ((omega ./ omega_r2) – (omega_r2 ./ omega))).^2);
phase_LRHP2 = -atan2(Q.*omega./omega_r2-Q.*omega_r2./omega,1)+pi./2-atan2(Q.*omega./omega_r2-Q.*omega_r2./omega,1)+pi./2;
norm_groupdelay_LRHP2 = 1/(2*pi) .* (2 .* (Q ./ (omega ./ omega_r2).^2 + Q)) ./ ((Q .* (omega ./ omega_r2) – Q ./ (omega ./ omega_r2)).^2 + 1);
groupdelay_LRHP2= (2 .* (Q .* omega_r2 ./ omega.^2 + Q ./ omega_r2)) ./ ((Q .* omega ./ omega_r2 – Q .* omega_r2 ./ omega).^2 + 1);
%LRHP3 = LInkwitz Riley Highpass 3
R_8 = 10E3;
R_9 = 20.0164E3;
C_9 = 1/(omega_r3*sqrt(R_8*R_9));
H_hp5 = (Q .* (s ./ omega_r3)) ./ (1 + Q .* ((s ./ omega_r3) + (omega_r3 ./ s)));
H_hp6 = (Q .* (s ./ omega_r3)) ./ (1 + Q .* ((s ./ omega_r3) + (omega_r3 ./ s)));
magnitude_LRHP3 = (Q .* (omega ./ omega_r3)) ./ sqrt(1 + (Q .* ((omega ./ omega_r3) – (omega_r3 ./ omega))).^2)…
.*(Q .* (omega ./ omega_r3)) ./ sqrt(1 + (Q .* ((omega ./ omega_r3) – (omega_r3 ./ omega))).^2);
phase_LRHP3 = -atan2(Q.*omega./omega_r3-Q.*omega_r3./omega,1)+pi./2-atan2(Q.*omega./omega_r3-Q.*omega_r3./omega,1)+pi./2;
norm_groupdelay_LRHP3 = 1/(2*pi) .* (2 .* (Q ./ (omega ./ omega_r3).^2 + Q)) ./ ((Q .* (omega ./ omega_r3) – Q ./ (omega ./ omega_r3)).^2 + 1);
groupdelay_LRHP3= (2 .* (Q .* omega_r3 ./ omega.^2 + Q ./ omega_r3)) ./ ((Q .* omega ./ omega_r3 – Q .* omega_r3 ./ omega).^2 + 1);
%LRHP4 = LInkwitz Riley Highpass 4
R_11 = 10E3;
R_12 = 20.0164E3;
C_12 = 1/(omega_r4*sqrt(R_11*R_12));
H_hp7 = (Q .* (s ./ omega_r4)) ./ (1 + Q .* ((s ./ omega_r4) + (omega_r4 ./ s)));
H_hp8 = (Q .* (s ./ omega_r4)) ./ (1 + Q .* ((s ./ omega_r4) + (omega_r4 ./ s)));
magnitude_LRHP4 = (Q .* (omega ./ omega_r4)) ./ sqrt(1 + (Q .* ((omega ./ omega_r4) – (omega_r4 ./ omega))).^2)…
.*(Q .* (omega ./ omega_r4)) ./ sqrt(1 + (Q .* ((omega ./ omega_r4) – (omega_r4 ./ omega))).^2);
phase_LRHP4 = -atan2(Q.*omega./omega_r4-Q.*omega_r4./omega,1)+pi./2-atan2(Q.*omega./omega_r4-Q.*omega_r4./omega,1)+pi./2;
norm_groupdelay_LRHP4 = 1/(2*pi) .* (2 .* (Q ./ (omega ./ omega_r4).^2 + Q)) ./ ((Q .* (omega ./ omega_r4) – Q ./ (omega ./ omega_r4)).^2 + 1);
groupdelay_LRHP4= (2 .* (Q .* omega_r4 ./ omega.^2 + Q ./ omega_r4)) ./ ((Q .* omega ./ omega_r4 – Q .* omega_r4 ./ omega).^2 + 1);
figure;
subplot(2, 1, 1);
semilogx(f, 20*log10(magnitude_LRHP1));
hold on
semilogx(f, 20*log10(magnitude_LRHP2));
semilogx(f, 20*log10(magnitude_LRHP3));
semilogx(f, 20*log10(magnitude_LRHP4));
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘Amplitude’);
title(‘LRHP’, ‘Interpreter’, ‘latex’);
% Plot für die Phase (in Grad)
subplot(2, 1, 2);
semilogx(f, rad2deg(phase_LRHP1));
hold on
semilogx(f, rad2deg(phase_LRHP2));
semilogx(f, rad2deg(phase_LRHP3));
semilogx(f, rad2deg(phase_LRHP4));
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘Phase (Grad)’);
figure;
% Plot für die groupdelay
semilogx(f, groupdelay_LRHP1);
hold on
semilogx(f, groupdelay_LRHP2);
semilogx(f, groupdelay_LRHP3);
semilogx(f, groupdelay_LRHP4);
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘groupdelay’);
title(‘LRHP’, ‘Interpreter’, ‘latex’);
%LRBP1 = LInkwitz Riley Bandpass 1
magnitude_LRBP1 = magnitude_LRHP1.*magnitude_LRTP1;
phase_LRBP1 = phase_LRHP1+phase_LRTP1;
groupdelay_LRBP1 = groupdelay_LRTP1+groupdelay_LRHP1;
%Same result:
%groupdelay_LRBP1 = -gradient(phase_LRBP1) ./ gradient(omega);
%LRBP1 = LInkwitz Riley Bandpass 2
magnitude_LRBP2 = magnitude_LRHP2.*magnitude_LRTP2;
phase_LRBP2 = phase_LRHP2+phase_LRTP2;
groupdelay_LRBP2 = groupdelay_LRTP2+groupdelay_LRHP2;
%Same result:
%groupdelay_LRBP2 = -gradient(phase_LRBP2) ./ gradient(omega);
%LRBP1 = LInkwitz Riley Bandpass 3
magnitude_LRBP3 = magnitude_LRHP3.*magnitude_LRTP3;
phase_LRBP3 = phase_LRHP3+phase_LRTP3;
groupdelay_LRBP3 = groupdelay_LRTP3+groupdelay_LRHP3;
%Same result:
%groupdelay_LRBP3 = -gradient(phase_LRBP3) ./ gradient(omega);
%LRBP1 = LInkwitz Riley Bandpass 4
magnitude_LRBP4 = magnitude_LRHP4.*magnitude_LRTP4;
phase_LRBP4 = phase_LRHP4+phase_LRTP4;
groupdelay_LRBP4 = groupdelay_LRTP4+groupdelay_LRHP4;
%Same result:
%groupdelay_LRBP4 = -gradient(phase_LRBP4) ./ gradient(omega);
%LRBP1 = LInkwitz Riley Bandpass_ges
magnitude_LRBP_ges = magnitude_LRBP1+magnitude_LRBP2+magnitude_LRBP3+magnitude_LRBP4;
phase_LRBP_ges = phase_LRBP1+phase_LRBP2+phase_LRBP3+phase_LRBP4;
groupdelay_LRBP_ges = groupdelay_LRTP1+groupdelay_LRHP1+groupdelay_LRTP2+groupdelay_LRHP2…
+groupdelay_LRTP3+groupdelay_LRHP3+groupdelay_LRTP4+groupdelay_LRHP4;
%Same result:
%groupdelay_LRBP_ges = -gradient(phase_LRBP2) ./ gradient(omega);
figure;
subplot(2, 1, 1);
semilogx(f, 20*log10(magnitude_LRBP1));
hold on
semilogx(f, 20*log10(magnitude_LRBP2));
semilogx(f, 20*log10(magnitude_LRBP3));
semilogx(f, 20*log10(magnitude_LRBP4));
semilogx(f, 20*log10(magnitude_LRBP_ges));
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘Amplitude’);
title(‘LRBP’, ‘Interpreter’, ‘latex’);
% Plot für die Phase (in Grad)
subplot(2, 1, 2);
semilogx(f, rad2deg(phase_LRBP1));
hold on
semilogx(f, rad2deg(phase_LRBP2));
semilogx(f, rad2deg(phase_LRBP3));
semilogx(f, rad2deg(phase_LRBP4));
semilogx(f, rad2deg(phase_LRBP_ges));
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘Phase (Grad)’);
figure;
% Plot für die groupdelay
semilogx(f, groupdelay_LRBP1);
hold on
semilogx(f, groupdelay_LRBP2);
semilogx(f, groupdelay_LRBP3);
semilogx(f, groupdelay_LRBP4);
semilogx(f, groupdelay_LRBP_ges);
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘groupdelay’);
title(‘LRBP’, ‘Interpreter’, ‘latex’); Hello,
I am an electrical engineering student currently working on analog filters, specifically cascaded Butterworth filter approximations, also known as Linkwitz-Riley filters.
In my MATLAB code, I generate bandpass filters from individual high-pass and low-pass filters, which together form a crossover network.
I want to plot the group delay of the high-pass and low-pass filters, as well as the total group delay of the crossover network.
However, when implementing this, only the group delay plot of the high-pass filter seems to make sense.
My calculations for the high-pass and low-pass filters are as follows.
Lowpass:

Groupdelay:

Highpass:

Groupdelay

After calculating the individual filters, I combined them into a crossover network, as shown in the following MATLAB code.

In my opinion, the group delay plot of the bandpass should look like this:
(from https://www.rfcafe.com/references/electrical/butterworth-highpass-bandpass-bandstop-filter-gain-phase-group-delay-equations.htm)

My calculations result in the following Bode diagram and the corresponding group delay plot.

What am I doing wrong?
Thanks in advance for any help!
Matlab Code:

omega_r1 = 2.*pi.*30;
omega_r2 = 2.*pi.*150;
omega_r3 = 2.*pi.*800;
omega_r4 = 2.*pi.*4E3;
omega_r5 = 2.*pi.*20E3;
Q = 0.7101 ;
f = logspace(-1, 5, 1000);
omega = 2 * pi * f;
s=1i.*omega;
%LRTP1 = LInkwitz Riley Lowpass 1
C_1 = 10E-6;
C_2 = 20.0164E-6;
R_1 = 1/(omega_r2*sqrt(C_1*C_2));
H_tp1 = 1 ./ (1 – (omega.^2 ./ omega_r2^2) + (s ./ (Q .* omega_r2)));
H_tp2 = 1 ./ (1 – (omega.^2 ./ omega_r2^2) + (s ./ (Q .* omega_r2)));
magnitude_LRTP1 = 1 ./ sqrt((1 – (omega.^2 ./ omega_r2.^2)).^2 + (omega ./ (Q .* omega_r2)).^2)…
.*1 ./ sqrt((1 – (omega.^2 ./ omega_r2.^2)).^2 + (omega ./ (Q .* omega_r2)).^2);
phase_LRTP1 = -atan2(omega./(Q.*omega_r2),1-(omega.^2./omega_r2.^2))-atan2(omega./(Q.*omega_r2),1-(omega.^2./omega_r2.^2));
norm_groupdelay_LRTP1 = 1/(2*pi).*(2 * Q * (omega.^2 ./ omega_r2.^2 + 1)) ./ (Q.^2 .* (omega.^4 ./ omega_r2.^4) + (1 – 2 * Q.^2) .* (omega.^2 ./ omega_r2.^2) + Q.^2);
groupdelay_LRTP1= (2 .* Q .* omega_r2 .* (omega.^2 + omega_r2.^2)) ./ (Q.^2 .* omega.^4 + (1 – 2 .* Q.^2) .* omega_r2.^2 .* omega.^2 + Q.^2 .* omega_r2.^4);
%LRTP2 = LInkwitz Riley Lowpass 2
C_4 = 10E-6;
C_5 = 20.0164E-6;
R_4 = 1/(omega_r3*sqrt(C_4*C_5));
H_tp3 = 1 ./ (1 – (omega.^2 ./ omega_r3^2) + (s ./ (Q .* omega_r3)));
H_tp4 = 1 ./ (1 – (omega.^2 ./ omega_r3^2) + (s ./ (Q .* omega_r3)));
magnitude_LRTP2 = 1 ./ sqrt((1 – (omega.^2 ./ omega_r3.^2)).^2 + (omega ./ (Q .* omega_r3)).^2)…
.*1 ./ sqrt((1 – (omega.^2 ./ omega_r3.^2)).^2 + (omega ./ (Q .* omega_r3)).^2);
phase_LRTP2 = -atan2(omega./(Q.*omega_r3),1-(omega.^2./omega_r3.^2))-atan2(omega./(Q.*omega_r3),1-(omega.^2./omega_r3.^2));
norm_groupdelay_LRTP2 = 1/(2*pi).*(2 * Q * (omega.^2 ./ omega_r3.^2 + 1)) ./ (Q.^2 .* (omega.^4 ./ omega_r3.^4) + (1 – 2 * Q.^2) .* (omega.^2 ./ omega_r3.^2) + Q.^2);
groupdelay_LRTP2= (2 .* Q .* omega_r3 .* (omega.^2 + omega_r3.^2)) ./ (Q.^2 .* omega.^4 + (1 – 2 .* Q.^2) .* omega_r3.^2 .* omega.^2 + Q.^2 .* omega_r3.^4);
%LRTP3 = LInkwitz Riley Lowpass 3
C_7 = 10E-6;
C_8 = 20.0164E-6;
R_7 = 1/(omega_r4*sqrt(C_7*C_8));
H_tp5 = 1 ./ (1 – (omega.^2 ./ omega_r4^2) + (s ./ (Q .* omega_r4)));
H_tp6 = 1 ./ (1 – (omega.^2 ./ omega_r4^2) + (s ./ (Q .* omega_r4)));
magnitude_LRTP3 = 1 ./ sqrt((1 – (omega.^2 ./ omega_r4.^2)).^2 + (omega ./ (Q .* omega_r4)).^2)…
.*1 ./ sqrt((1 – (omega.^2 ./ omega_r4.^2)).^2 + (omega ./ (Q .* omega_r4)).^2);
phase_LRTP3 = -atan2(omega./(Q.*omega_r4),1-(omega.^2./omega_r4.^2))-atan2(omega./(Q.*omega_r4),1-(omega.^2./omega_r4.^2));
norm_groupdelay_LRTP3 = 1/(2*pi).*(2 * Q * (omega.^2 ./ omega_r4.^2 + 1)) ./ (Q.^2 .* (omega.^4 ./ omega_r4.^4) + (1 – 2 * Q.^2) .* (omega.^2 ./ omega_r4.^2) + Q.^2);
groupdelay_LRTP3= (2 .* Q .* omega_r4 .* (omega.^2 + omega_r4.^2)) ./ (Q^2 .* omega.^4 + (1 – 2 .* Q.^2) .* omega_r4.^2 .* omega.^2 + Q.^2 .* omega_r4.^4);
%LRTP4 = LInkwitz Riley Lowpass 4
C_10 = 10E-6;
C_11 = 20.0164E-6;
R_10 = 1/(omega_r5*sqrt(C_10*C_11));
H_tp7 = 1 ./ (1 – (omega.^2 ./ omega_r5^2) + (s ./ (Q .* omega_r5)));
H_tp8 = 1 ./ (1 – (omega.^2 ./ omega_r5^2) + (s ./ (Q .* omega_r5)));
magnitude_LRTP4 = 1 ./ sqrt((1 – (omega.^2 ./ omega_r5.^2)).^2 + (omega ./ (Q .* omega_r5)).^2)…
.*1 ./ sqrt((1 – (omega.^2 ./ omega_r5.^2)).^2 + (omega ./ (Q .* omega_r5)).^2);
phase_LRTP4 = -atan2(omega./(Q.*omega_r5),1-(omega.^2./omega_r5.^2))-atan2(omega./(Q.*omega_r5),1-(omega.^2./omega_r5.^2));
norm_groupdelay_LRTP4 = 1/(2*pi).*(2 * Q * (omega.^2 ./ omega_r5.^2 + 1)) ./ (Q.^2 .* (omega.^4 ./ omega_r5.^4) + (1 – 2 * Q.^2) .* (omega.^2 ./ omega_r5.^2) + Q.^2);
groupdelay_LRTP4= (2 .* Q .* omega_r5 .* (omega.^2 + omega_r5.^2)) ./ (Q.^2 .* omega.^4 + (1 – 2 .* Q.^2) .* omega_r5.^2 .* omega.^2 + Q.^2 .* omega_r5.^4);
figure;
subplot(2, 1, 1);
semilogx(f, 20*log10(magnitude_LRTP1));
hold on
semilogx(f, 20*log10(magnitude_LRTP2));
semilogx(f, 20*log10(magnitude_LRTP3));
semilogx(f, 20*log10(magnitude_LRTP4));
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘Amplitude’);
title(‘LRTP’, ‘Interpreter’, ‘latex’);
subplot(2, 1, 2);
semilogx(f, rad2deg(phase_LRTP1));
hold on
semilogx(f, rad2deg(phase_LRTP2));
semilogx(f, rad2deg(phase_LRTP3));
semilogx(f, rad2deg(phase_LRTP4));
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘Phase (Grad)’);
figure;
semilogx(f, groupdelay_LRTP1);
hold on
semilogx(f, groupdelay_LRTP2);
semilogx(f, groupdelay_LRTP3);
semilogx(f, groupdelay_LRTP4);
grid on;
xlabel(‘$omega$’, ‘Interpreter’, ‘latex’);
ylabel(‘groupdelay’);
title(‘LRTP’, ‘Interpreter’, ‘latex’);
%LRHP1 = LInkwitz Riley Highpass 1
R_2 = 10E3;
R_3 = 20.0164E3;
C_3 = 1/(omega_r1*sqrt(R_2*R_3));
H_hp1 = (Q .* (s ./ omega_r1)) ./ (1 + Q .* ((s ./ omega_r1) + (omega_r1 ./ s)));
H_hp2 = (Q .* (s ./ omega_r1)) ./ (1 + Q .* ((s ./ omega_r1) + (omega_r1 ./ s)));
magnitude_LRHP1 = (Q .* (omega ./ omega_r1)) ./ sqrt(1 + (Q .* ((omega ./ omega_r1) – (omega_r1 ./ omega))).^2)…
.*(Q .* (omega ./ omega_r1)) ./ sqrt(1 + (Q .* ((omega ./ omega_r1) – (omega_r1 ./ omega))).^2);
phase_LRHP1 = -atan2(Q.*omega./omega_r1-Q.*omega_r1./omega,1)+pi./2-atan2(Q.*omega./omega_r1-Q.*omega_r1./omega,1)+pi./2;
norm_groupdelay_LRHP1 = 1/(2*pi) .* (2 .* (Q ./ (omega ./ omega_r1).^2 + Q)) ./ ((Q .* (omega ./ omega_r1) – Q ./ (omega ./ omega_r1)).^2 + 1);
groupdelay_LRHP1= (2 .* (Q .* omega_r1 ./ omega.^2 + Q ./ omega_r1)) ./ ((Q .* omega ./ omega_r1 – Q .* omega_r1 ./ omega).^2 + 1);
%LRHP2 = LInkwitz Riley Highpass 2
R_5 = 10E3;
R_6 = 20.0164E3;
C_6 = 1/(omega_r2*sqrt(R_5*R_6));
H_hp3 = (Q .* (s ./ omega_r2)) ./ (1 + Q .* ((s ./ omega_r2) + (omega_r2 ./ s)));
H_hp4 = (Q .* (s ./ omega_r2)) ./ (1 + Q .* ((s ./ omega_r2) + (omega_r2 ./ s)));
magnitude_LRHP2 = (Q .* (omega ./ omega_r2)) ./ sqrt(1 + (Q .* ((omega ./ omega_r2) – (omega_r2 ./ omega))).^2)…
.*(Q .* (omega ./ omega_r2)) ./ sqrt(1 + (Q .* ((omega ./ omega_r2) – (omega_r2 ./ omega))).^2);
phase_LRHP2 = -atan2(Q.*omega./omega_r2-Q.*omega_r2./omega,1)+pi./2-atan2(Q.*omega./omega_r2-Q.*omega_r2./omega,1)+pi./2;
norm_groupdelay_LRHP2 = 1/(2*pi) .* (2 .* (Q ./ (omega ./ omega_r2).^2 + Q)) ./ ((Q .* (omega ./ omega_r2) – Q ./ (omega ./ omega_r2)).^2 + 1);
groupdelay_LRHP2= (2 .* (Q .* omega_r2 ./ omega.^2 + Q ./ omega_r2)) ./ ((Q .* omega ./ omega_r2 – Q .* omega_r2 ./ omega).^2 + 1);
%LRHP3 = LInkwitz Riley Highpass 3
R_8 = 10E3;
R_9 = 20.0164E3;
C_9 = 1/(omega_r3*sqrt(R_8*R_9));
H_hp5 = (Q .* (s ./ omega_r3)) ./ (1 + Q .* ((s ./ omega_r3) + (omega_r3 ./ s)));
H_hp6 = (Q .* (s ./ omega_r3)) ./ (1 + Q .* ((s ./ omega_r3) + (omega_r3 ./ s)));
magnitude_LRHP3 = (Q .* (omega ./ omega_r3)) ./ sqrt(1 + (Q .* ((omega ./ omega_r3) – (omega_r3 ./ omega))).^2)…
.*(Q .* (omega ./ omega_r3)) ./ sqrt(1 + (Q .* ((omega ./ omega_r3) – (omega_r3 ./ omega))).^2);
phase_LRHP3 = -atan2(Q.*omega./omega_r3-Q.*omega_r3./omega,1)+pi./2-atan2(Q.*omega./omega_r3-Q.*omega_r3./omega,1)+pi./2;
norm_groupdelay_LRHP3 = 1/(2*pi) .* (2 .* (Q ./ (omega ./ omega_r3).^2 + Q)) ./ ((Q .* (omega ./ omega_r3) – Q ./ (omega ./ omega_r3)).^2 + 1);
groupdelay_LRHP3= (2 .* (Q .* omega_r3 ./ omega.^2 + Q ./ omega_r3)) ./ ((Q .* omega ./ omega_r3 – Q .* omega_r3 ./ omega).^2 + 1);
%LRHP4 = LInkwitz Riley Highpass 4
R_11 = 10E3;
R_12 = 20.0164E3;
C_12 = 1/(omega_r4*sqrt(R_11*R_12));
H_hp7 = (Q .* (s ./ omega_r4)) ./ (1 + Q .* ((s ./ omega_r4) + (omega_r4 ./ s)));
H_hp8 = (Q .* (s ./ omega_r4)) ./ (1 + Q .* ((s ./ omega_r4) + (omega_r4 ./ s)));
magnitude_LRHP4 = (Q .* (omega ./ omega_r4)) ./ sqrt(1 + (Q .* ((omega ./ omega_r4) – (omega_r4 ./ omega))).^2)…
.*(Q .* (omega ./ omega_r4)) ./ sqrt(1 + (Q .* ((omega ./ omega_r4) – (omega_r4 ./ omega))).^2);
phase_LRHP4 = -atan2(Q.*omega./omega_r4-Q.*omega_r4./omega,1)+pi./2-atan2(Q.*omega./omega_r4-Q.*omega_r4./omega,1)+pi./2;
norm_groupdelay_LRHP4 = 1/(2*pi) .* (2 .* (Q ./ (omega ./ omega_r4).^2 + Q)) ./ ((Q .* (omega ./ omega_r4) – Q ./ (omega ./ omega_r4)).^2 + 1);
groupdelay_LRHP4= (2 .* (Q .* omega_r4 ./ omega.^2 + Q ./ omega_r4)) ./ ((Q .* omega ./ omega_r4 – Q .* omega_r4 ./ omega).^2 + 1);
figure;
subplot(2, 1, 1);
semilogx(f, 20*log10(magnitude_LRHP1));
hold on
semilogx(f, 20*log10(magnitude_LRHP2));
semilogx(f, 20*log10(magnitude_LRHP3));
semilogx(f, 20*log10(magnitude_LRHP4));
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘Amplitude’);
title(‘LRHP’, ‘Interpreter’, ‘latex’);
% Plot für die Phase (in Grad)
subplot(2, 1, 2);
semilogx(f, rad2deg(phase_LRHP1));
hold on
semilogx(f, rad2deg(phase_LRHP2));
semilogx(f, rad2deg(phase_LRHP3));
semilogx(f, rad2deg(phase_LRHP4));
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘Phase (Grad)’);
figure;
% Plot für die groupdelay
semilogx(f, groupdelay_LRHP1);
hold on
semilogx(f, groupdelay_LRHP2);
semilogx(f, groupdelay_LRHP3);
semilogx(f, groupdelay_LRHP4);
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘groupdelay’);
title(‘LRHP’, ‘Interpreter’, ‘latex’);
%LRBP1 = LInkwitz Riley Bandpass 1
magnitude_LRBP1 = magnitude_LRHP1.*magnitude_LRTP1;
phase_LRBP1 = phase_LRHP1+phase_LRTP1;
groupdelay_LRBP1 = groupdelay_LRTP1+groupdelay_LRHP1;
%Same result:
%groupdelay_LRBP1 = -gradient(phase_LRBP1) ./ gradient(omega);
%LRBP1 = LInkwitz Riley Bandpass 2
magnitude_LRBP2 = magnitude_LRHP2.*magnitude_LRTP2;
phase_LRBP2 = phase_LRHP2+phase_LRTP2;
groupdelay_LRBP2 = groupdelay_LRTP2+groupdelay_LRHP2;
%Same result:
%groupdelay_LRBP2 = -gradient(phase_LRBP2) ./ gradient(omega);
%LRBP1 = LInkwitz Riley Bandpass 3
magnitude_LRBP3 = magnitude_LRHP3.*magnitude_LRTP3;
phase_LRBP3 = phase_LRHP3+phase_LRTP3;
groupdelay_LRBP3 = groupdelay_LRTP3+groupdelay_LRHP3;
%Same result:
%groupdelay_LRBP3 = -gradient(phase_LRBP3) ./ gradient(omega);
%LRBP1 = LInkwitz Riley Bandpass 4
magnitude_LRBP4 = magnitude_LRHP4.*magnitude_LRTP4;
phase_LRBP4 = phase_LRHP4+phase_LRTP4;
groupdelay_LRBP4 = groupdelay_LRTP4+groupdelay_LRHP4;
%Same result:
%groupdelay_LRBP4 = -gradient(phase_LRBP4) ./ gradient(omega);
%LRBP1 = LInkwitz Riley Bandpass_ges
magnitude_LRBP_ges = magnitude_LRBP1+magnitude_LRBP2+magnitude_LRBP3+magnitude_LRBP4;
phase_LRBP_ges = phase_LRBP1+phase_LRBP2+phase_LRBP3+phase_LRBP4;
groupdelay_LRBP_ges = groupdelay_LRTP1+groupdelay_LRHP1+groupdelay_LRTP2+groupdelay_LRHP2…
+groupdelay_LRTP3+groupdelay_LRHP3+groupdelay_LRTP4+groupdelay_LRHP4;
%Same result:
%groupdelay_LRBP_ges = -gradient(phase_LRBP2) ./ gradient(omega);
figure;
subplot(2, 1, 1);
semilogx(f, 20*log10(magnitude_LRBP1));
hold on
semilogx(f, 20*log10(magnitude_LRBP2));
semilogx(f, 20*log10(magnitude_LRBP3));
semilogx(f, 20*log10(magnitude_LRBP4));
semilogx(f, 20*log10(magnitude_LRBP_ges));
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘Amplitude’);
title(‘LRBP’, ‘Interpreter’, ‘latex’);
% Plot für die Phase (in Grad)
subplot(2, 1, 2);
semilogx(f, rad2deg(phase_LRBP1));
hold on
semilogx(f, rad2deg(phase_LRBP2));
semilogx(f, rad2deg(phase_LRBP3));
semilogx(f, rad2deg(phase_LRBP4));
semilogx(f, rad2deg(phase_LRBP_ges));
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘Phase (Grad)’);
figure;
% Plot für die groupdelay
semilogx(f, groupdelay_LRBP1);
hold on
semilogx(f, groupdelay_LRBP2);
semilogx(f, groupdelay_LRBP3);
semilogx(f, groupdelay_LRBP4);
semilogx(f, groupdelay_LRBP_ges);
grid on;
xlabel(‘$f$’, ‘Interpreter’, ‘latex’);
ylabel(‘groupdelay’);
title(‘LRBP’, ‘Interpreter’, ‘latex’); group delay, higpass, lowpass, bandpass, crossover, groupdelay MATLAB Answers — New Questions

​

Tags: matlab

Share this!

Related posts

I want to build a double pendulum system in Simulink but am getting errors relating to the tolerance and step size
2025-05-16

I want to build a double pendulum system in Simulink but am getting errors relating to the tolerance and step size

How to model a simple brake in Simscape (mechanical rotational domain)?
2025-05-16

How to model a simple brake in Simscape (mechanical rotational domain)?

How to create excel sheet for developed model using MATLAB
2025-05-16

How to create excel sheet for developed model using MATLAB

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Search

Categories

  • Matlab
  • Microsoft
  • News
  • Other
Application Package Repository Telkom University

Tags

matlab microsoft opensources
Application Package Download License

Application Package Download License

Adobe
Google for Education
IBM
Matlab
Microsoft
Wordpress
Visual Paradigm
Opensource

Sign Up For Newsletters

Be the First to Know. Sign up for newsletter today

Application Package Repository Telkom University

Portal Application Package Repository Telkom University, for internal use only, empower civitas academica in study and research.

Information

  • Telkom University
  • About Us
  • Contact
  • Forum Discussion
  • FAQ
  • Helpdesk Ticket

Contact Us

  • Ask: Any question please read FAQ
  • Mail: helpdesk@telkomuniversity.ac.id
  • Call: +62 823-1994-9941
  • WA: +62 823-1994-9943
  • Site: Gedung Panambulai. Jl. Telekomunikasi

Copyright © Telkom University. All Rights Reserved. ch

  • FAQ
  • Privacy Policy
  • Term

This Application Package for internal Telkom University only (students and employee). Chiers... Dismiss