Email: [email protected]

This Portal for internal use only!

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • Visual Paradigm
  • IBM
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Windows
      • Office
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Categories
  • Microsoft
    • Microsoft Apps
    • Office
    • Operating System
    • VLS
    • Developer Tools
    • Productivity Tools
    • Database
    • AI + Machine Learning
    • Middleware System
    • Learning Services
    • Analytics
    • Networking
    • Compute
    • Security
    • Internet Of Things
  • Adobe
  • Matlab
  • Google
  • Visual Paradigm
  • WordPress
    • Plugin WP
    • Themes WP
  • Opensource
  • Others
More Categories Less Categories
  • Get Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • My Account
    • Download
    • Cart
    • Checkout
    • Login
  • About Us
    • Contact
    • Forum
    • Frequently Questions
    • Privacy Policy
  • Forum
    • News
      • Category
      • News Tag

iconTicket Service Desk

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • Visual Paradigm
  • IBM
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Windows
      • Office
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Menu
  • Home
    • Download Application Package Repository Telkom University
    • Application Package Repository Telkom University
    • Download Official License Telkom University
    • Download Installer Application Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • All Pack
    • Microsoft
      • Operating System
      • Productivity Tools
      • Developer Tools
      • Database
      • AI + Machine Learning
      • Middleware System
      • Networking
      • Compute
      • Security
      • Analytics
      • Internet Of Things
      • Learning Services
    • Microsoft Apps
      • VLS
    • Adobe
    • Matlab
    • WordPress
      • Themes WP
      • Plugin WP
    • Google
    • Opensource
    • Others
  • My account
    • Download
    • Get Pack
    • Cart
    • Checkout
  • News
    • Category
    • News Tag
  • Forum
  • About Us
    • Privacy Policy
    • Frequently Questions
    • Contact
Home/Matlab/Help with HSDM model for lithium adsorption: simulated curves do not match experimental data (based on Jiang et al., 2020)

Help with HSDM model for lithium adsorption: simulated curves do not match experimental data (based on Jiang et al., 2020)

PuTI / 2025-06-25
Help with HSDM model for lithium adsorption: simulated curves do not match experimental data (based on Jiang et al., 2020)
Matlab News

Hello everyone,
I’m trying to replicate the results from the paper by Jiang et al. (2020):
*“Application of concentration-dependent HSDM to the lithium adsorption from brine in fixed bed columns” – Separation and Purification Technology 241, 116682.
The paper models lithium adsorption in a fixed bed packed with Li–Al layered double hydroxide resins. It uses a concentration-dependent Homogeneous Surface Diffusion Model (HSDM), accounting for axial dispersion, film diffusion, surface diffusion, and Langmuir equilibrium. I’ve implemented a full MATLAB simulation including radial discretization inside the particles and a coupling with the axial profile.
I’ve followed the theoretical development very closely and used the same parameters as those reported by the authors. However, the breakthrough curves generated by my model still don’t fully match the experimental data shown in the paper (especially at intermediate values of C_out/C_in).
I suspect there may be a mistake in my implementation of either:
the mass balance in the fluid phase,
the boundary condition at the surface of the particle,
or how I define the rate of mass transfer using Kf.
I’m sharing my complete code below, and I would appreciate any suggestions or corrections you may have.

function hsdm_column_simulation_v2
% Full HSDM model with radial diffusion dependent on loading (Jiang et al. 2023)
clc; clear; close all

%% ==== PARÁMETROS DEL SISTEMA ==== –> %% ==== SYSTEM PARAMETERS ====
% Parámetros de la columna –> % Column parameters
Q = (15e-6)/60; % Brine flow rate [m3/s]
D = 0.02; % Column diameter [m]
A = pi/4 * D^2; % Cross-sectional area [m2]
v = Q/A; % Superficial or interstitial velocity [m/s]
epsilon = 0.355; % Bed void fraction
mu = 6.493e-3; % Fluid dynamic viscosity [Pa·s]

% Parámetros de la resina –> % Resin properties
rho = 1.3787; % Solid density [g/L] (coherent with q in mg/L)
dp = 0.65/1000; % Particle diameter [m]
Dm = 1.166e-5 / 10000; % Lithium diffusivity [m2/s]
R = 0.000325; % Particle radius [m]
Dax = 0.44*Dm + 0.83*v*dp; % Axial dispersion [m²/s] = 4.2983e-5

%% Isoterma de Langmuir –> %% Langmuir Isotherm
qmax = 5.9522; % Langmuir parameter [mg/g]
b = 0.03439; % Langmuir parameter [L/mg]

%% Difusión superficial dependiente de la carga –> %% Surface diffusion dependent on loading
Ds0 = 4e-14 ; % Surface diffusion coef. at 0 coverage [m²/s] (original was 3.2258e-14)
k_exp = 0.505; % Dimensionless constant

%% Correlaciones empíricas –> %% Empirical correlations
Re = (rho * v * dp) / mu;
Sc = mu / (rho * Dm);
Sh = 1.09 + 0.5 * Re^0.5 * Sc^(1/3);
Kf = Sh * Dm / dp; % 6.5386e-5

%% Discretización –> %% Discretization
L = 0.60; % Column height [m]
Nz = 20; % Axial nodes
Nr = 5; % Radial nodes per particle
dz = L / (Nz – 1);
dr = R / Nr;

%% Condiciones operacionales –> %% Operating conditions
cFeedVec = [300, 350, 400]; % mg/L
tf = 36000; % Final time [s] (600 min)
tspan = [0 tf];
colores = [‘b’,’g’,’r’];

%% Figura –> %% Plot
figure; hold on
for j = 1:length(cFeedVec)
cFeed = cFeedVec(j);

% Condiciones iniciales para el lecho y la partícula
c0 = zeros(Nz,1); % Initial concentration in fluid: C = 0
q0 = zeros(Nz*Nr,1); % Initial loading in particles: q = 0
y0 = [c0; q0];

% Agrupación de parámetros –> % Parameter grouping
param = struct(‘Nz’,Nz,’Nr’,Nr,’dz’,dz,’dr’,dr,’R’,R,…
‘epsilon’,epsilon,’rho’,rho,’v’,v,’Dax’,Dax,…
‘qmax’,qmax,’b’,b,’Ds0′,Ds0,’k’,k_exp,…
‘cFeed’,cFeed,’Kf’,Kf);

%% Resolución del sistema con ode15s –> %% System solution using ode15s
[T, Y] = ode15s(@(t,y) hsdm_rhs(t,y,param), tspan, y0);

% Ploteo de gráfico con salida normalizada –> % Plot normalized outlet
C_out = Y(:,Nz);
plot(T/60, C_out / cFeed, colores(j), ‘LineWidth’, 2, …
‘DisplayName’, [‘C_{in} = ‘ num2str(cFeed) ‘ mg/L’]);
end

% %% Evaluación de carga adsorbida para corroborar modelo
% Nz = param.Nz;
% Nr = param.Nr;
% R = param.R;
% dr = param.dr;
% qmax = param.qmax;
% q_final = reshape(Y(end, Nz+1:end), Nr, Nz); % q(r,z) at final time
% q_avg = trapz(linspace(0, R, Nr), q_final .* linspace(0, R, Nr)’, 1) * 2 / R^2;
% fprintf(‘n—– Saturation Analysis for C_in = %d mg/L —–n’, cFeed);
% fprintf(‘Global average q : %.4f mg/gn’, mean(q_avg));
% fprintf(‘Max q in column : %.4f mg/gn’, max(q_avg));
% fprintf(‘Theoretical qmax : %.4f mg/gn’, qmax);

%% Gráfico de Cout/Cin vs tiempo –> %% Plot Cout/Cin vs time
xlabel(‘Tiempo (min)’)
ylabel(‘C_{out} / C_{in}’)
title(‘Curva de ruptura Modelo HSDM’)
legend(‘Location’,’southeast’)
set(gca, ‘FontName’, ‘Palatino Linotype’) % Axes font
box on

%% Puntos experimentales aproximados (visualmente desde el paper)
t_exp = 0:30:600;
Cexp_300 = [0.00 0.22 0.36 0.48 0.57 0.63 0.69 0.73 0.77 0.80 …
0.82 0.84 0.85 0.86 0.87 0.88 0.88 0.89 0.89 0.89 0.90];
Cexp_350 = [0.00 0.26 0.40 0.53 0.62 0.69 0.74 0.78 0.81 0.83 …
0.85 0.86 0.87 0.88 0.88 0.89 0.89 0.90 0.90 0.90 0.91];
Cexp_400 = [0.00 0.29 0.45 0.59 0.68 0.75 0.79 0.83 0.85 0.87 …
0.88 0.89 0.90 0.90 0.91 0.91 0.91 0.91 0.92 0.92 0.92];

% Superponer puntos experimentales –> % Plot experimental data
plot(t_exp, Cexp_400, ‘r^’, ‘MarkerFaceColor’, ‘r’, ‘DisplayName’, ‘Exp 400 mg/L’)
plot(t_exp, Cexp_350, ‘go’, ‘MarkerFaceColor’, ‘g’, ‘DisplayName’, ‘Exp 350 mg/L’)
plot(t_exp, Cexp_300, ‘bs’, ‘MarkerFaceColor’, ‘b’, ‘DisplayName’, ‘Exp 300 mg/L’)

end

%% FUNCIÓN RHS DEL MODELO HSDM –> %% RHS FUNCTION FOR HSDM MODEL
function dydt = hsdm_rhs(~, y, p)
% Extraer parámetros –> % Extract parameters
Nz = p.Nz; Nr = p.Nr; dz = p.dz; dr = p.dr;
R = p.R; epsilon = p.epsilon; rho = p.rho;
v = p.v; Dax = p.Dax; qmax = p.qmax; b = p.b;
Ds0 = p.Ds0; k_exp = p.k; cFeed = p.cFeed; Kf = p.Kf;

% Separar variables –> % Split variables
c = y(1:Nz);
q = reshape(y(Nz+1:end), Nr, Nz); % q(r,z)

% Inicializar derivadas –> % Initialize derivatives
dc_dt = zeros(Nz,1);
dq_dt = zeros(Nr,Nz);

%% Balance de masa axial (fase fluida) –> %% Mass balance (fluid phase)
for i = 2:Nz-1
dcdz = (c(i+1)-c(i-1))/(2*dz);
d2cdz2 = (c(i+1) – 2*c(i) + c(i-1))/dz^2;
qsurf = q(end,i);
Csurf = c(i);
dqR_dt = (3/R) * Kf * (Csurf – qsurf);
dc_dt(i) = Dax * d2cdz2 – v * dcdz – ((1 – epsilon)/epsilon) * rho * 1000 * dqR_dt;
end

%% Condiciones de contorno en la columna
% Entrada z = 0 – tipo Danckwerts
qsurf = q(end,1);
Csurf = c(1);
dqR_dt_in = (3 / R) * Kf * (Csurf – qsurf);
dc_dt(1) = Dax * (c(2) – c(1)) / dz^2 – v * (cFeed – c(1)) – ((1 – epsilon)/epsilon) * rho * 1000 * dqR_dt_in;

% Salida z = L
dc_dt(end) = Dax * (c(end-1) – c(end)) / dz;

%% Difusión radial al interior de la partícula
for iz = 1:Nz
for ir = 2:Nr-1
rq = (ir-1)*dr;
d2q = (q(ir+1,iz) – 2*q(ir,iz) + q(ir-1,iz)) / dr^2;
Ds = Ds0 * (1 – q(ir,iz)/qmax)^k_exp;
dq_dt(ir,iz) = Ds * (d2q + (2/rq)*(q(ir+1,iz)-q(ir-1,iz))/(2*dr));
end

% Centro de la partícula
dq_dt(1,iz) = 0;

% Superficie de la partícula
q_eq = (qmax * b * c(iz)) / (1 + b * c(iz));
dq_dt(Nr,iz) = 3 * Kf / R * (q_eq – q(Nr,iz));
end

% Vector final
dydt = [dc_dt; dq_dt(:)];
endHello everyone,
I’m trying to replicate the results from the paper by Jiang et al. (2020):
*“Application of concentration-dependent HSDM to the lithium adsorption from brine in fixed bed columns” – Separation and Purification Technology 241, 116682.
The paper models lithium adsorption in a fixed bed packed with Li–Al layered double hydroxide resins. It uses a concentration-dependent Homogeneous Surface Diffusion Model (HSDM), accounting for axial dispersion, film diffusion, surface diffusion, and Langmuir equilibrium. I’ve implemented a full MATLAB simulation including radial discretization inside the particles and a coupling with the axial profile.
I’ve followed the theoretical development very closely and used the same parameters as those reported by the authors. However, the breakthrough curves generated by my model still don’t fully match the experimental data shown in the paper (especially at intermediate values of C_out/C_in).
I suspect there may be a mistake in my implementation of either:
the mass balance in the fluid phase,
the boundary condition at the surface of the particle,
or how I define the rate of mass transfer using Kf.
I’m sharing my complete code below, and I would appreciate any suggestions or corrections you may have.

function hsdm_column_simulation_v2
% Full HSDM model with radial diffusion dependent on loading (Jiang et al. 2023)
clc; clear; close all

%% ==== PARÁMETROS DEL SISTEMA ==== –> %% ==== SYSTEM PARAMETERS ====
% Parámetros de la columna –> % Column parameters
Q = (15e-6)/60; % Brine flow rate [m3/s]
D = 0.02; % Column diameter [m]
A = pi/4 * D^2; % Cross-sectional area [m2]
v = Q/A; % Superficial or interstitial velocity [m/s]
epsilon = 0.355; % Bed void fraction
mu = 6.493e-3; % Fluid dynamic viscosity [Pa·s]

% Parámetros de la resina –> % Resin properties
rho = 1.3787; % Solid density [g/L] (coherent with q in mg/L)
dp = 0.65/1000; % Particle diameter [m]
Dm = 1.166e-5 / 10000; % Lithium diffusivity [m2/s]
R = 0.000325; % Particle radius [m]
Dax = 0.44*Dm + 0.83*v*dp; % Axial dispersion [m²/s] = 4.2983e-5

%% Isoterma de Langmuir –> %% Langmuir Isotherm
qmax = 5.9522; % Langmuir parameter [mg/g]
b = 0.03439; % Langmuir parameter [L/mg]

%% Difusión superficial dependiente de la carga –> %% Surface diffusion dependent on loading
Ds0 = 4e-14 ; % Surface diffusion coef. at 0 coverage [m²/s] (original was 3.2258e-14)
k_exp = 0.505; % Dimensionless constant

%% Correlaciones empíricas –> %% Empirical correlations
Re = (rho * v * dp) / mu;
Sc = mu / (rho * Dm);
Sh = 1.09 + 0.5 * Re^0.5 * Sc^(1/3);
Kf = Sh * Dm / dp; % 6.5386e-5

%% Discretización –> %% Discretization
L = 0.60; % Column height [m]
Nz = 20; % Axial nodes
Nr = 5; % Radial nodes per particle
dz = L / (Nz – 1);
dr = R / Nr;

%% Condiciones operacionales –> %% Operating conditions
cFeedVec = [300, 350, 400]; % mg/L
tf = 36000; % Final time [s] (600 min)
tspan = [0 tf];
colores = [‘b’,’g’,’r’];

%% Figura –> %% Plot
figure; hold on
for j = 1:length(cFeedVec)
cFeed = cFeedVec(j);

% Condiciones iniciales para el lecho y la partícula
c0 = zeros(Nz,1); % Initial concentration in fluid: C = 0
q0 = zeros(Nz*Nr,1); % Initial loading in particles: q = 0
y0 = [c0; q0];

% Agrupación de parámetros –> % Parameter grouping
param = struct(‘Nz’,Nz,’Nr’,Nr,’dz’,dz,’dr’,dr,’R’,R,…
‘epsilon’,epsilon,’rho’,rho,’v’,v,’Dax’,Dax,…
‘qmax’,qmax,’b’,b,’Ds0′,Ds0,’k’,k_exp,…
‘cFeed’,cFeed,’Kf’,Kf);

%% Resolución del sistema con ode15s –> %% System solution using ode15s
[T, Y] = ode15s(@(t,y) hsdm_rhs(t,y,param), tspan, y0);

% Ploteo de gráfico con salida normalizada –> % Plot normalized outlet
C_out = Y(:,Nz);
plot(T/60, C_out / cFeed, colores(j), ‘LineWidth’, 2, …
‘DisplayName’, [‘C_{in} = ‘ num2str(cFeed) ‘ mg/L’]);
end

% %% Evaluación de carga adsorbida para corroborar modelo
% Nz = param.Nz;
% Nr = param.Nr;
% R = param.R;
% dr = param.dr;
% qmax = param.qmax;
% q_final = reshape(Y(end, Nz+1:end), Nr, Nz); % q(r,z) at final time
% q_avg = trapz(linspace(0, R, Nr), q_final .* linspace(0, R, Nr)’, 1) * 2 / R^2;
% fprintf(‘n—– Saturation Analysis for C_in = %d mg/L —–n’, cFeed);
% fprintf(‘Global average q : %.4f mg/gn’, mean(q_avg));
% fprintf(‘Max q in column : %.4f mg/gn’, max(q_avg));
% fprintf(‘Theoretical qmax : %.4f mg/gn’, qmax);

%% Gráfico de Cout/Cin vs tiempo –> %% Plot Cout/Cin vs time
xlabel(‘Tiempo (min)’)
ylabel(‘C_{out} / C_{in}’)
title(‘Curva de ruptura Modelo HSDM’)
legend(‘Location’,’southeast’)
set(gca, ‘FontName’, ‘Palatino Linotype’) % Axes font
box on

%% Puntos experimentales aproximados (visualmente desde el paper)
t_exp = 0:30:600;
Cexp_300 = [0.00 0.22 0.36 0.48 0.57 0.63 0.69 0.73 0.77 0.80 …
0.82 0.84 0.85 0.86 0.87 0.88 0.88 0.89 0.89 0.89 0.90];
Cexp_350 = [0.00 0.26 0.40 0.53 0.62 0.69 0.74 0.78 0.81 0.83 …
0.85 0.86 0.87 0.88 0.88 0.89 0.89 0.90 0.90 0.90 0.91];
Cexp_400 = [0.00 0.29 0.45 0.59 0.68 0.75 0.79 0.83 0.85 0.87 …
0.88 0.89 0.90 0.90 0.91 0.91 0.91 0.91 0.92 0.92 0.92];

% Superponer puntos experimentales –> % Plot experimental data
plot(t_exp, Cexp_400, ‘r^’, ‘MarkerFaceColor’, ‘r’, ‘DisplayName’, ‘Exp 400 mg/L’)
plot(t_exp, Cexp_350, ‘go’, ‘MarkerFaceColor’, ‘g’, ‘DisplayName’, ‘Exp 350 mg/L’)
plot(t_exp, Cexp_300, ‘bs’, ‘MarkerFaceColor’, ‘b’, ‘DisplayName’, ‘Exp 300 mg/L’)

end

%% FUNCIÓN RHS DEL MODELO HSDM –> %% RHS FUNCTION FOR HSDM MODEL
function dydt = hsdm_rhs(~, y, p)
% Extraer parámetros –> % Extract parameters
Nz = p.Nz; Nr = p.Nr; dz = p.dz; dr = p.dr;
R = p.R; epsilon = p.epsilon; rho = p.rho;
v = p.v; Dax = p.Dax; qmax = p.qmax; b = p.b;
Ds0 = p.Ds0; k_exp = p.k; cFeed = p.cFeed; Kf = p.Kf;

% Separar variables –> % Split variables
c = y(1:Nz);
q = reshape(y(Nz+1:end), Nr, Nz); % q(r,z)

% Inicializar derivadas –> % Initialize derivatives
dc_dt = zeros(Nz,1);
dq_dt = zeros(Nr,Nz);

%% Balance de masa axial (fase fluida) –> %% Mass balance (fluid phase)
for i = 2:Nz-1
dcdz = (c(i+1)-c(i-1))/(2*dz);
d2cdz2 = (c(i+1) – 2*c(i) + c(i-1))/dz^2;
qsurf = q(end,i);
Csurf = c(i);
dqR_dt = (3/R) * Kf * (Csurf – qsurf);
dc_dt(i) = Dax * d2cdz2 – v * dcdz – ((1 – epsilon)/epsilon) * rho * 1000 * dqR_dt;
end

%% Condiciones de contorno en la columna
% Entrada z = 0 – tipo Danckwerts
qsurf = q(end,1);
Csurf = c(1);
dqR_dt_in = (3 / R) * Kf * (Csurf – qsurf);
dc_dt(1) = Dax * (c(2) – c(1)) / dz^2 – v * (cFeed – c(1)) – ((1 – epsilon)/epsilon) * rho * 1000 * dqR_dt_in;

% Salida z = L
dc_dt(end) = Dax * (c(end-1) – c(end)) / dz;

%% Difusión radial al interior de la partícula
for iz = 1:Nz
for ir = 2:Nr-1
rq = (ir-1)*dr;
d2q = (q(ir+1,iz) – 2*q(ir,iz) + q(ir-1,iz)) / dr^2;
Ds = Ds0 * (1 – q(ir,iz)/qmax)^k_exp;
dq_dt(ir,iz) = Ds * (d2q + (2/rq)*(q(ir+1,iz)-q(ir-1,iz))/(2*dr));
end

% Centro de la partícula
dq_dt(1,iz) = 0;

% Superficie de la partícula
q_eq = (qmax * b * c(iz)) / (1 + b * c(iz));
dq_dt(Nr,iz) = 3 * Kf / R * (q_eq – q(Nr,iz));
end

% Vector final
dydt = [dc_dt; dq_dt(:)];
end Hello everyone,
I’m trying to replicate the results from the paper by Jiang et al. (2020):
*“Application of concentration-dependent HSDM to the lithium adsorption from brine in fixed bed columns” – Separation and Purification Technology 241, 116682.
The paper models lithium adsorption in a fixed bed packed with Li–Al layered double hydroxide resins. It uses a concentration-dependent Homogeneous Surface Diffusion Model (HSDM), accounting for axial dispersion, film diffusion, surface diffusion, and Langmuir equilibrium. I’ve implemented a full MATLAB simulation including radial discretization inside the particles and a coupling with the axial profile.
I’ve followed the theoretical development very closely and used the same parameters as those reported by the authors. However, the breakthrough curves generated by my model still don’t fully match the experimental data shown in the paper (especially at intermediate values of C_out/C_in).
I suspect there may be a mistake in my implementation of either:
the mass balance in the fluid phase,
the boundary condition at the surface of the particle,
or how I define the rate of mass transfer using Kf.
I’m sharing my complete code below, and I would appreciate any suggestions or corrections you may have.

function hsdm_column_simulation_v2
% Full HSDM model with radial diffusion dependent on loading (Jiang et al. 2023)
clc; clear; close all

%% ==== PARÁMETROS DEL SISTEMA ==== –> %% ==== SYSTEM PARAMETERS ====
% Parámetros de la columna –> % Column parameters
Q = (15e-6)/60; % Brine flow rate [m3/s]
D = 0.02; % Column diameter [m]
A = pi/4 * D^2; % Cross-sectional area [m2]
v = Q/A; % Superficial or interstitial velocity [m/s]
epsilon = 0.355; % Bed void fraction
mu = 6.493e-3; % Fluid dynamic viscosity [Pa·s]

% Parámetros de la resina –> % Resin properties
rho = 1.3787; % Solid density [g/L] (coherent with q in mg/L)
dp = 0.65/1000; % Particle diameter [m]
Dm = 1.166e-5 / 10000; % Lithium diffusivity [m2/s]
R = 0.000325; % Particle radius [m]
Dax = 0.44*Dm + 0.83*v*dp; % Axial dispersion [m²/s] = 4.2983e-5

%% Isoterma de Langmuir –> %% Langmuir Isotherm
qmax = 5.9522; % Langmuir parameter [mg/g]
b = 0.03439; % Langmuir parameter [L/mg]

%% Difusión superficial dependiente de la carga –> %% Surface diffusion dependent on loading
Ds0 = 4e-14 ; % Surface diffusion coef. at 0 coverage [m²/s] (original was 3.2258e-14)
k_exp = 0.505; % Dimensionless constant

%% Correlaciones empíricas –> %% Empirical correlations
Re = (rho * v * dp) / mu;
Sc = mu / (rho * Dm);
Sh = 1.09 + 0.5 * Re^0.5 * Sc^(1/3);
Kf = Sh * Dm / dp; % 6.5386e-5

%% Discretización –> %% Discretization
L = 0.60; % Column height [m]
Nz = 20; % Axial nodes
Nr = 5; % Radial nodes per particle
dz = L / (Nz – 1);
dr = R / Nr;

%% Condiciones operacionales –> %% Operating conditions
cFeedVec = [300, 350, 400]; % mg/L
tf = 36000; % Final time [s] (600 min)
tspan = [0 tf];
colores = [‘b’,’g’,’r’];

%% Figura –> %% Plot
figure; hold on
for j = 1:length(cFeedVec)
cFeed = cFeedVec(j);

% Condiciones iniciales para el lecho y la partícula
c0 = zeros(Nz,1); % Initial concentration in fluid: C = 0
q0 = zeros(Nz*Nr,1); % Initial loading in particles: q = 0
y0 = [c0; q0];

% Agrupación de parámetros –> % Parameter grouping
param = struct(‘Nz’,Nz,’Nr’,Nr,’dz’,dz,’dr’,dr,’R’,R,…
‘epsilon’,epsilon,’rho’,rho,’v’,v,’Dax’,Dax,…
‘qmax’,qmax,’b’,b,’Ds0′,Ds0,’k’,k_exp,…
‘cFeed’,cFeed,’Kf’,Kf);

%% Resolución del sistema con ode15s –> %% System solution using ode15s
[T, Y] = ode15s(@(t,y) hsdm_rhs(t,y,param), tspan, y0);

% Ploteo de gráfico con salida normalizada –> % Plot normalized outlet
C_out = Y(:,Nz);
plot(T/60, C_out / cFeed, colores(j), ‘LineWidth’, 2, …
‘DisplayName’, [‘C_{in} = ‘ num2str(cFeed) ‘ mg/L’]);
end

% %% Evaluación de carga adsorbida para corroborar modelo
% Nz = param.Nz;
% Nr = param.Nr;
% R = param.R;
% dr = param.dr;
% qmax = param.qmax;
% q_final = reshape(Y(end, Nz+1:end), Nr, Nz); % q(r,z) at final time
% q_avg = trapz(linspace(0, R, Nr), q_final .* linspace(0, R, Nr)’, 1) * 2 / R^2;
% fprintf(‘n—– Saturation Analysis for C_in = %d mg/L —–n’, cFeed);
% fprintf(‘Global average q : %.4f mg/gn’, mean(q_avg));
% fprintf(‘Max q in column : %.4f mg/gn’, max(q_avg));
% fprintf(‘Theoretical qmax : %.4f mg/gn’, qmax);

%% Gráfico de Cout/Cin vs tiempo –> %% Plot Cout/Cin vs time
xlabel(‘Tiempo (min)’)
ylabel(‘C_{out} / C_{in}’)
title(‘Curva de ruptura Modelo HSDM’)
legend(‘Location’,’southeast’)
set(gca, ‘FontName’, ‘Palatino Linotype’) % Axes font
box on

%% Puntos experimentales aproximados (visualmente desde el paper)
t_exp = 0:30:600;
Cexp_300 = [0.00 0.22 0.36 0.48 0.57 0.63 0.69 0.73 0.77 0.80 …
0.82 0.84 0.85 0.86 0.87 0.88 0.88 0.89 0.89 0.89 0.90];
Cexp_350 = [0.00 0.26 0.40 0.53 0.62 0.69 0.74 0.78 0.81 0.83 …
0.85 0.86 0.87 0.88 0.88 0.89 0.89 0.90 0.90 0.90 0.91];
Cexp_400 = [0.00 0.29 0.45 0.59 0.68 0.75 0.79 0.83 0.85 0.87 …
0.88 0.89 0.90 0.90 0.91 0.91 0.91 0.91 0.92 0.92 0.92];

% Superponer puntos experimentales –> % Plot experimental data
plot(t_exp, Cexp_400, ‘r^’, ‘MarkerFaceColor’, ‘r’, ‘DisplayName’, ‘Exp 400 mg/L’)
plot(t_exp, Cexp_350, ‘go’, ‘MarkerFaceColor’, ‘g’, ‘DisplayName’, ‘Exp 350 mg/L’)
plot(t_exp, Cexp_300, ‘bs’, ‘MarkerFaceColor’, ‘b’, ‘DisplayName’, ‘Exp 300 mg/L’)

end

%% FUNCIÓN RHS DEL MODELO HSDM –> %% RHS FUNCTION FOR HSDM MODEL
function dydt = hsdm_rhs(~, y, p)
% Extraer parámetros –> % Extract parameters
Nz = p.Nz; Nr = p.Nr; dz = p.dz; dr = p.dr;
R = p.R; epsilon = p.epsilon; rho = p.rho;
v = p.v; Dax = p.Dax; qmax = p.qmax; b = p.b;
Ds0 = p.Ds0; k_exp = p.k; cFeed = p.cFeed; Kf = p.Kf;

% Separar variables –> % Split variables
c = y(1:Nz);
q = reshape(y(Nz+1:end), Nr, Nz); % q(r,z)

% Inicializar derivadas –> % Initialize derivatives
dc_dt = zeros(Nz,1);
dq_dt = zeros(Nr,Nz);

%% Balance de masa axial (fase fluida) –> %% Mass balance (fluid phase)
for i = 2:Nz-1
dcdz = (c(i+1)-c(i-1))/(2*dz);
d2cdz2 = (c(i+1) – 2*c(i) + c(i-1))/dz^2;
qsurf = q(end,i);
Csurf = c(i);
dqR_dt = (3/R) * Kf * (Csurf – qsurf);
dc_dt(i) = Dax * d2cdz2 – v * dcdz – ((1 – epsilon)/epsilon) * rho * 1000 * dqR_dt;
end

%% Condiciones de contorno en la columna
% Entrada z = 0 – tipo Danckwerts
qsurf = q(end,1);
Csurf = c(1);
dqR_dt_in = (3 / R) * Kf * (Csurf – qsurf);
dc_dt(1) = Dax * (c(2) – c(1)) / dz^2 – v * (cFeed – c(1)) – ((1 – epsilon)/epsilon) * rho * 1000 * dqR_dt_in;

% Salida z = L
dc_dt(end) = Dax * (c(end-1) – c(end)) / dz;

%% Difusión radial al interior de la partícula
for iz = 1:Nz
for ir = 2:Nr-1
rq = (ir-1)*dr;
d2q = (q(ir+1,iz) – 2*q(ir,iz) + q(ir-1,iz)) / dr^2;
Ds = Ds0 * (1 – q(ir,iz)/qmax)^k_exp;
dq_dt(ir,iz) = Ds * (d2q + (2/rq)*(q(ir+1,iz)-q(ir-1,iz))/(2*dr));
end

% Centro de la partícula
dq_dt(1,iz) = 0;

% Superficie de la partícula
q_eq = (qmax * b * c(iz)) / (1 + b * c(iz));
dq_dt(Nr,iz) = 3 * Kf / R * (q_eq – q(Nr,iz));
end

% Vector final
dydt = [dc_dt; dq_dt(:)];
end adsorption, hsdm, resin, adsorption column, lithium MATLAB Answers — New Questions

​

Tags: matlab

Share this!

Related posts

Random Forest with paired observations: how to maintain subject separation
2025-07-08

Random Forest with paired observations: how to maintain subject separation

Why is uiaxes small by default in a uifigure?
2025-07-08

Why is uiaxes small by default in a uifigure?

For the trainNetwork function, progress plots for training are not closing, except if done manually. How do I close it? I have tried close all, close force, close(fig), & more
2025-07-08

For the trainNetwork function, progress plots for training are not closing, except if done manually. How do I close it? I have tried close all, close force, close(fig), & more

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Search

Categories

  • Matlab
  • Microsoft
  • News
  • Other
Application Package Repository Telkom University

Tags

matlab microsoft opensources
Application Package Download License

Application Package Download License

Adobe
Google for Education
IBM
Matlab
Microsoft
Wordpress
Visual Paradigm
Opensource

Sign Up For Newsletters

Be the First to Know. Sign up for newsletter today

Application Package Repository Telkom University

Portal Application Package Repository Telkom University, for internal use only, empower civitas academica in study and research.

Information

  • Telkom University
  • About Us
  • Contact
  • Forum Discussion
  • FAQ
  • Helpdesk Ticket

Contact Us

  • Ask: Any question please read FAQ
  • Mail: [email protected]
  • Call: +62 823-1994-9941
  • WA: +62 823-1994-9943
  • Site: Gedung Panambulai. Jl. Telekomunikasi

Copyright © Telkom University. All Rights Reserved. ch

  • FAQ
  • Privacy Policy
  • Term