Email: helpdesk@telkomuniversity.ac.id

This Portal for internal use only!

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • Visual Paradigm
  • IBM
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Windows
      • Office
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Categories
  • Microsoft
    • Microsoft Apps
    • Office
    • Operating System
    • VLS
    • Developer Tools
    • Productivity Tools
    • Database
    • AI + Machine Learning
    • Middleware System
    • Learning Services
    • Analytics
    • Networking
    • Compute
    • Security
    • Internet Of Things
  • Adobe
  • Matlab
  • Google
  • Visual Paradigm
  • WordPress
    • Plugin WP
    • Themes WP
  • Opensource
  • Others
More Categories Less Categories
  • Get Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • My Account
    • Download
    • Cart
    • Checkout
    • Login
  • About Us
    • Contact
    • Forum
    • Frequently Questions
    • Privacy Policy
  • Forum
    • News
      • Category
      • News Tag

iconTicket Service Desk

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • Visual Paradigm
  • IBM
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Windows
      • Office
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Menu
  • Home
    • Download Application Package Repository Telkom University
    • Application Package Repository Telkom University
    • Download Official License Telkom University
    • Download Installer Application Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • All Pack
    • Microsoft
      • Operating System
      • Productivity Tools
      • Developer Tools
      • Database
      • AI + Machine Learning
      • Middleware System
      • Networking
      • Compute
      • Security
      • Analytics
      • Internet Of Things
      • Learning Services
    • Microsoft Apps
      • VLS
    • Adobe
    • Matlab
    • WordPress
      • Themes WP
      • Plugin WP
    • Google
    • Opensource
    • Others
  • My account
    • Download
    • Get Pack
    • Cart
    • Checkout
  • News
    • Category
    • News Tag
  • Forum
  • About Us
    • Privacy Policy
    • Frequently Questions
    • Contact
Home/Matlab/Hi, I need help with this code. The absorption values are negative for some incident values while using the Abeles matrix method.

Hi, I need help with this code. The absorption values are negative for some incident values while using the Abeles matrix method.

PuTI / 2025-01-21
Hi, I need help with this code. The absorption values are negative for some incident values while using the Abeles matrix method.
Matlab News

In this code, I’m using the Abeles matrix method and Bruggeman’s effective medium approximation to calculate reflection and absorption. The problem is that I’m obtaining negative absorption values at high incident angles above the critical angle. To address this, I considered only the real part of the angle in the transmitted medium, which partially resolved the issue. However, at normal incidence, I’m now getting transmission values exceeding 100%, which is physically impossible. I suspect this might be due to numerical precision issues, as MATLAB may struggle to compute exponentials with very small values. Any ideas on how to fix this? Thank you
clear all
lambda = 500*10^-3:10*10^-3:2500*10^-3; % in microns
A1= 1.4182;
B1= 0.021304;
n_pc=sqrt(1+(A1.*lambda.^2)./(lambda.^2-B1));
wp= 15.92; % eV
f0 = 0.096;
Gamma0 = 0.048; % eV
f1 = 0.100;
Gamma1 = 4.511; % eV
omega1 = 0.174; % eV
f2 = 0.135;
Gamma2 = 1.334; % eV
omega2 = 0.582; % eV
f3 = 0.106;
Gamma3 = 2.178; % eV
omega3 = 1.597; % eV
f4 = 0.729;
Gamma4 = 6.292; % eV
omega4 = 6.089; % eV
OmegaP = sqrt(f0) * wp; % eV
eV = 4.13566733e-1 * 2.99792458 ./ lambda;
epsilon = 1 – OmegaP^2 ./ (eV .* (eV + 1i * Gamma0));
epsilon = epsilon + f1 * wp^2 ./ ((omega1^2 – eV.^2) – 1i * eV * Gamma1);
epsilon = epsilon + f2 * wp^2 ./ ((omega2^2 – eV.^2) – 1i * eV * Gamma2);
epsilon = epsilon + f3 * wp^2 ./ ((omega3^2 – eV.^2) – 1i * eV * Gamma3);
epsilon = epsilon + f4 * wp^2 ./ ((omega4^2 – eV.^2) – 1i * eV * Gamma4);
n = real(sqrt(epsilon));
k = imag(sqrt(epsilon));
nMetal = n+1i.*k;
%NWATER
NWATER = 0.0738.*lambda.^6 – 0.6168.*lambda.^5 + 2.0263.*lambda.^4 – 3.3315.*lambda.^3 + 2.8708.*lambda.^2 – 1.2367.*lambda + 1.5411;
nAir=1+0.05792105./(238.0185-(lambda.^(-2)))+0.00167917./(57.362-(lambda.^(-2)));
% permetivity
epsMetal = nMetal.^2;
epsWATER=NWATER.^2;
%parmenter for each axes
%1 specific volume
ni=n_pc;
nt=NWATER;
%angels
thetaI =0; % incidence angle
thetaI = thetaI/180*pi;
beta=20;
beta = beta/180*pi;
fi=0;
fi =fi/180*pi;
%%%%%
a=30*10.^-9;
b=5*10.^-9;
d=2*a*cos(beta);
f=0.3;
%555
Rpp = [];
Rsp = [];
Rps = [];
Rss = [];
Tpp = [];
Tsp = [];
Tps = [];
Tss = [];
for i=1:size(lambda,2)
%snel law §
thetaT=asin(ni(i)*sin(thetaI)/nt(i));
k0=2*pi/(lambda(i)*10^-6);
VX=ni(i)*sin(thetaI);
% epsilon for compost materals SHAPE Factor
e= sqrt(1-(b/a)^2);
la=((1-e^.2)/e^2)*((log((1+e)/(1-e)))/2*e^2 -1);
lb=0.5*(1-la);
% la=((1-e^.2)/e^2)*((log((1+e)/(1-e)))/2*e^2 -1);
% lb=0.5*(1-la);
epsi=epsMetal(i);
epsh=epsWATER(i);
eps_x = epsh .* (epsh + (la.* (1 – f) + f) .* (epsi – epsh)) ./ (epsh + lb .* (1 – f) .* (epsi – epsh));
eps_y = epsh .* (epsh + (la.* (1 – f) + f) .* (epsi – epsh)) ./ (epsh + lb .* (1 – f) .* (epsi – epsh));
eps_z = epsh .* (epsh + (lb.* (1 – f) + f) .* (epsi – epsh)) ./ (epsh + la .* (1 – f) .* (epsi – epsh));
eps1=eps_x;
eps2=eps_y;
eps3=eps_z;
% eps_xx=eps_2+(eps_1*cos(beta)*cos(beta) +eps_3*sin(beta)*sin(beta) -eps_2)*cos(fi)*cos(fi);
% eps_xy=0.5*(eps_1*cos(beta)*cos(beta)+eps_3*sin(beta)*sin(beta) -eps_2)*sin(2*fi);
% eps_xz=0.5*(eps_3 -eps_1)*sin(2*beta)*cos(fi);
% eps_yx=0.5.*(eps_1.*cos(beta)*cos(beta) +eps_3.*sin(beta).*sin(beta) -eps_2).*sin(2.*fi);
% eps_yy=eps_2 +(eps_1*cos(beta)*cos(beta) +eps_3.*sin(beta).*sin(beta) -eps_2)*sin(fi)*sin(fi);
% eps_yz=0.5*(eps_3-eps_1).*sin(2.*beta).*sin(fi);
% eps_zx=0.5.*(eps_3 – eps_1).*sin(2.*beta).*cos(fi);
% eps_zy=0.5.*(eps_3 – eps_1).*sin(2.*beta).*sin(fi);
% eps_zz=eps_1+(eps_3 – eps_1).*cos(beta)*cos(beta);
% delt11= -(V_x.*eps_zx)./eps_zz;
% delt12=1 – (V_x.*V_x)./eps_zz;
% delt13=-V_x.*eps_zy./eps_zz;
% delt14=0;
% delt21=eps_xx – (eps_xz.*eps_zx)./eps_zz;
% delt22=-V_x.*eps_xz./eps_zz;
% delt23=eps_xy – (eps_xz.*eps_zy)./eps_zz;
% delt24=0;
% delt31=0;
% delt32=0;
% delt33=0;
% delt34=1;
% delt41=eps_yx- (eps_yz*eps_zx) /eps_zz;
% delt42=-V_x*eps_yz /eps_zz;
% delt43=eps_yy -(V_x.^2-eps_yz*eps_zy)./eps_zz;
% delt44=0;
% delt=[delt11 delt12 delt13 delt14 ;delt21 delt22 delt23 delt24 ;delt31 delt32 delt33 delt34;delt41 delt42 delt43 delt44];
P=exp(1)^(1i.*k0.*d.*delt);
a1 = ni(i).*(nt(i).*P(1,2)-cos(thetaT).*P(2,2))+cos(thetaI).*(nt(i).*P(1,1)-cos(thetaT).*P(2,1));
a2 = ni(i).*(nt(i).*P(1,2)-cos(thetaT)*P(2,2))-cos(thetaI).*(nt(i).*P(1,1)-cos(thetaT).*P(2,1));
a3 = (nt(i).*P(1,3)-cos(thetaT).*P(2,3))+ni(i).*cos(thetaI).*(nt(i).*P(1,4)-cos(thetaT).*P(2,4));
a4 = (nt(i).*P(1,3)-cos(thetaT).*P(2,3))-ni(i).*cos(thetaI).*(nt(i).*P(1,4)-cos(thetaT).*P(2,4));
a5 = ni(i).*(nt(i).*cos(thetaT).*P(3,2 )-P(4,2)) +cos(thetaI).*(nt(i).*cos(thetaT).*P(3,1)-P(4,1));
a6 = ni(i).*(nt(i).*cos(thetaT).*P(3,2) -P(4,2))-cos(thetaI).*(nt(i).*cos(thetaT).*P(3,1)-P(4,1));
a7 = (nt(i).*cos(thetaT).*P(3,3)-P(4,3))+ni(i).*cos(thetaI).*(nt(i).*P(3,4).*cos(thetaT)-P(4,4));
a8 = (nt(i).*cos(thetaT).*P(3,3)-P(4,3))-ni(i).*cos(thetaI).*(nt(i).*P(3,4).*cos(thetaT)-P(4,4));
b1 = (ni(i).*P(2,2)+cos(thetaI).*P(2,1))./nt(i);
b2 = (ni(i).*P(2,2)-cos(thetaI).*P(2,1))./nt(i);
b3 = (P(2,3)-ni(i).*cos(thetaI).*P(2,4))./nt(i);
b4 = (P(2,3)+ni(i).*cos(thetaI).*P(2,4))./nt(i);
b5 = ni(i).*P(3,2)+cos(thetaI).*P(3,1);
b6 = ni(i).*P(3,2)-cos(thetaI).*P(3,1);
b7 = P(3,3)-ni(i).*cos(thetaI).*P(3,4);
b8 = P(3,3)+ni(i).*cos(thetaI).*P(3,4);
rpp=(a1.*a8-a4.*a5)./(a4.*a6-a2.*a8);
rps=(a3.*a8-a4.*a7)./(a4.*a6-a2.*a8);
rsp=(a2.*a5-a1.*a6)./(a4.*a6-a2.*a8);
rss=(a2.*a7-a6.*a3)./(a4.*a6-a2.*a8);
tpp=b1+b2.*rpp+b3.*rsp;
tps=b4+b2.*rps+b3.*rss;
tsp=b5+b6.*rpp+b7.*rsp;
tss=b8+b6.*rps+b7.*rss;
Rpp = [Rpp (abs(rpp))^2];
Rsp = [Rsp (abs(rsp))^2];
Rps = [Rps (abs(rps))^2];
Rss = [Rss (abs(rss))^2];
Tpp = [Tpp (abs(tpp .*tpp.* (nt(i) .* cos(real(thetaT)) ./ni(i) .* cos(thetaI))))];
Tsp = [Tsp (abs(tsp .*tsp.* nt(i) .* cos(real(thetaT)) ./ni(i) .* cos(thetaI)))];
Tps = [Tps (abs(tps .*tps.* nt(i) .* cos(real(thetaT)) ./ni(i) .* cos(thetaI)))];
Tss = [Tss (abs(tss .*tss.* nt(i) .* cos(real(thetaT)) ./ni(i) .* cos(thetaI)))];
T=(Tpp+Tsp+Tps+Tss)/2;
R=(Rpp+Rsp+Rps+Rss)/2;
A=1-R-T;
end
figure(1)
hold on
plot(lambda*10^3,A*100,’LineWidth’, 3)
hold on
xlabel(‘Wavelength (nm)’,’fontsize’,16)
hold on
ylabel(‘Absorbtion’,’fontsize’, 16)In this code, I’m using the Abeles matrix method and Bruggeman’s effective medium approximation to calculate reflection and absorption. The problem is that I’m obtaining negative absorption values at high incident angles above the critical angle. To address this, I considered only the real part of the angle in the transmitted medium, which partially resolved the issue. However, at normal incidence, I’m now getting transmission values exceeding 100%, which is physically impossible. I suspect this might be due to numerical precision issues, as MATLAB may struggle to compute exponentials with very small values. Any ideas on how to fix this? Thank you
clear all
lambda = 500*10^-3:10*10^-3:2500*10^-3; % in microns
A1= 1.4182;
B1= 0.021304;
n_pc=sqrt(1+(A1.*lambda.^2)./(lambda.^2-B1));
wp= 15.92; % eV
f0 = 0.096;
Gamma0 = 0.048; % eV
f1 = 0.100;
Gamma1 = 4.511; % eV
omega1 = 0.174; % eV
f2 = 0.135;
Gamma2 = 1.334; % eV
omega2 = 0.582; % eV
f3 = 0.106;
Gamma3 = 2.178; % eV
omega3 = 1.597; % eV
f4 = 0.729;
Gamma4 = 6.292; % eV
omega4 = 6.089; % eV
OmegaP = sqrt(f0) * wp; % eV
eV = 4.13566733e-1 * 2.99792458 ./ lambda;
epsilon = 1 – OmegaP^2 ./ (eV .* (eV + 1i * Gamma0));
epsilon = epsilon + f1 * wp^2 ./ ((omega1^2 – eV.^2) – 1i * eV * Gamma1);
epsilon = epsilon + f2 * wp^2 ./ ((omega2^2 – eV.^2) – 1i * eV * Gamma2);
epsilon = epsilon + f3 * wp^2 ./ ((omega3^2 – eV.^2) – 1i * eV * Gamma3);
epsilon = epsilon + f4 * wp^2 ./ ((omega4^2 – eV.^2) – 1i * eV * Gamma4);
n = real(sqrt(epsilon));
k = imag(sqrt(epsilon));
nMetal = n+1i.*k;
%NWATER
NWATER = 0.0738.*lambda.^6 – 0.6168.*lambda.^5 + 2.0263.*lambda.^4 – 3.3315.*lambda.^3 + 2.8708.*lambda.^2 – 1.2367.*lambda + 1.5411;
nAir=1+0.05792105./(238.0185-(lambda.^(-2)))+0.00167917./(57.362-(lambda.^(-2)));
% permetivity
epsMetal = nMetal.^2;
epsWATER=NWATER.^2;
%parmenter for each axes
%1 specific volume
ni=n_pc;
nt=NWATER;
%angels
thetaI =0; % incidence angle
thetaI = thetaI/180*pi;
beta=20;
beta = beta/180*pi;
fi=0;
fi =fi/180*pi;
%%%%%
a=30*10.^-9;
b=5*10.^-9;
d=2*a*cos(beta);
f=0.3;
%555
Rpp = [];
Rsp = [];
Rps = [];
Rss = [];
Tpp = [];
Tsp = [];
Tps = [];
Tss = [];
for i=1:size(lambda,2)
%snel law §
thetaT=asin(ni(i)*sin(thetaI)/nt(i));
k0=2*pi/(lambda(i)*10^-6);
VX=ni(i)*sin(thetaI);
% epsilon for compost materals SHAPE Factor
e= sqrt(1-(b/a)^2);
la=((1-e^.2)/e^2)*((log((1+e)/(1-e)))/2*e^2 -1);
lb=0.5*(1-la);
% la=((1-e^.2)/e^2)*((log((1+e)/(1-e)))/2*e^2 -1);
% lb=0.5*(1-la);
epsi=epsMetal(i);
epsh=epsWATER(i);
eps_x = epsh .* (epsh + (la.* (1 – f) + f) .* (epsi – epsh)) ./ (epsh + lb .* (1 – f) .* (epsi – epsh));
eps_y = epsh .* (epsh + (la.* (1 – f) + f) .* (epsi – epsh)) ./ (epsh + lb .* (1 – f) .* (epsi – epsh));
eps_z = epsh .* (epsh + (lb.* (1 – f) + f) .* (epsi – epsh)) ./ (epsh + la .* (1 – f) .* (epsi – epsh));
eps1=eps_x;
eps2=eps_y;
eps3=eps_z;
% eps_xx=eps_2+(eps_1*cos(beta)*cos(beta) +eps_3*sin(beta)*sin(beta) -eps_2)*cos(fi)*cos(fi);
% eps_xy=0.5*(eps_1*cos(beta)*cos(beta)+eps_3*sin(beta)*sin(beta) -eps_2)*sin(2*fi);
% eps_xz=0.5*(eps_3 -eps_1)*sin(2*beta)*cos(fi);
% eps_yx=0.5.*(eps_1.*cos(beta)*cos(beta) +eps_3.*sin(beta).*sin(beta) -eps_2).*sin(2.*fi);
% eps_yy=eps_2 +(eps_1*cos(beta)*cos(beta) +eps_3.*sin(beta).*sin(beta) -eps_2)*sin(fi)*sin(fi);
% eps_yz=0.5*(eps_3-eps_1).*sin(2.*beta).*sin(fi);
% eps_zx=0.5.*(eps_3 – eps_1).*sin(2.*beta).*cos(fi);
% eps_zy=0.5.*(eps_3 – eps_1).*sin(2.*beta).*sin(fi);
% eps_zz=eps_1+(eps_3 – eps_1).*cos(beta)*cos(beta);
% delt11= -(V_x.*eps_zx)./eps_zz;
% delt12=1 – (V_x.*V_x)./eps_zz;
% delt13=-V_x.*eps_zy./eps_zz;
% delt14=0;
% delt21=eps_xx – (eps_xz.*eps_zx)./eps_zz;
% delt22=-V_x.*eps_xz./eps_zz;
% delt23=eps_xy – (eps_xz.*eps_zy)./eps_zz;
% delt24=0;
% delt31=0;
% delt32=0;
% delt33=0;
% delt34=1;
% delt41=eps_yx- (eps_yz*eps_zx) /eps_zz;
% delt42=-V_x*eps_yz /eps_zz;
% delt43=eps_yy -(V_x.^2-eps_yz*eps_zy)./eps_zz;
% delt44=0;
% delt=[delt11 delt12 delt13 delt14 ;delt21 delt22 delt23 delt24 ;delt31 delt32 delt33 delt34;delt41 delt42 delt43 delt44];
P=exp(1)^(1i.*k0.*d.*delt);
a1 = ni(i).*(nt(i).*P(1,2)-cos(thetaT).*P(2,2))+cos(thetaI).*(nt(i).*P(1,1)-cos(thetaT).*P(2,1));
a2 = ni(i).*(nt(i).*P(1,2)-cos(thetaT)*P(2,2))-cos(thetaI).*(nt(i).*P(1,1)-cos(thetaT).*P(2,1));
a3 = (nt(i).*P(1,3)-cos(thetaT).*P(2,3))+ni(i).*cos(thetaI).*(nt(i).*P(1,4)-cos(thetaT).*P(2,4));
a4 = (nt(i).*P(1,3)-cos(thetaT).*P(2,3))-ni(i).*cos(thetaI).*(nt(i).*P(1,4)-cos(thetaT).*P(2,4));
a5 = ni(i).*(nt(i).*cos(thetaT).*P(3,2 )-P(4,2)) +cos(thetaI).*(nt(i).*cos(thetaT).*P(3,1)-P(4,1));
a6 = ni(i).*(nt(i).*cos(thetaT).*P(3,2) -P(4,2))-cos(thetaI).*(nt(i).*cos(thetaT).*P(3,1)-P(4,1));
a7 = (nt(i).*cos(thetaT).*P(3,3)-P(4,3))+ni(i).*cos(thetaI).*(nt(i).*P(3,4).*cos(thetaT)-P(4,4));
a8 = (nt(i).*cos(thetaT).*P(3,3)-P(4,3))-ni(i).*cos(thetaI).*(nt(i).*P(3,4).*cos(thetaT)-P(4,4));
b1 = (ni(i).*P(2,2)+cos(thetaI).*P(2,1))./nt(i);
b2 = (ni(i).*P(2,2)-cos(thetaI).*P(2,1))./nt(i);
b3 = (P(2,3)-ni(i).*cos(thetaI).*P(2,4))./nt(i);
b4 = (P(2,3)+ni(i).*cos(thetaI).*P(2,4))./nt(i);
b5 = ni(i).*P(3,2)+cos(thetaI).*P(3,1);
b6 = ni(i).*P(3,2)-cos(thetaI).*P(3,1);
b7 = P(3,3)-ni(i).*cos(thetaI).*P(3,4);
b8 = P(3,3)+ni(i).*cos(thetaI).*P(3,4);
rpp=(a1.*a8-a4.*a5)./(a4.*a6-a2.*a8);
rps=(a3.*a8-a4.*a7)./(a4.*a6-a2.*a8);
rsp=(a2.*a5-a1.*a6)./(a4.*a6-a2.*a8);
rss=(a2.*a7-a6.*a3)./(a4.*a6-a2.*a8);
tpp=b1+b2.*rpp+b3.*rsp;
tps=b4+b2.*rps+b3.*rss;
tsp=b5+b6.*rpp+b7.*rsp;
tss=b8+b6.*rps+b7.*rss;
Rpp = [Rpp (abs(rpp))^2];
Rsp = [Rsp (abs(rsp))^2];
Rps = [Rps (abs(rps))^2];
Rss = [Rss (abs(rss))^2];
Tpp = [Tpp (abs(tpp .*tpp.* (nt(i) .* cos(real(thetaT)) ./ni(i) .* cos(thetaI))))];
Tsp = [Tsp (abs(tsp .*tsp.* nt(i) .* cos(real(thetaT)) ./ni(i) .* cos(thetaI)))];
Tps = [Tps (abs(tps .*tps.* nt(i) .* cos(real(thetaT)) ./ni(i) .* cos(thetaI)))];
Tss = [Tss (abs(tss .*tss.* nt(i) .* cos(real(thetaT)) ./ni(i) .* cos(thetaI)))];
T=(Tpp+Tsp+Tps+Tss)/2;
R=(Rpp+Rsp+Rps+Rss)/2;
A=1-R-T;
end
figure(1)
hold on
plot(lambda*10^3,A*100,’LineWidth’, 3)
hold on
xlabel(‘Wavelength (nm)’,’fontsize’,16)
hold on
ylabel(‘Absorbtion’,’fontsize’, 16) In this code, I’m using the Abeles matrix method and Bruggeman’s effective medium approximation to calculate reflection and absorption. The problem is that I’m obtaining negative absorption values at high incident angles above the critical angle. To address this, I considered only the real part of the angle in the transmitted medium, which partially resolved the issue. However, at normal incidence, I’m now getting transmission values exceeding 100%, which is physically impossible. I suspect this might be due to numerical precision issues, as MATLAB may struggle to compute exponentials with very small values. Any ideas on how to fix this? Thank you
clear all
lambda = 500*10^-3:10*10^-3:2500*10^-3; % in microns
A1= 1.4182;
B1= 0.021304;
n_pc=sqrt(1+(A1.*lambda.^2)./(lambda.^2-B1));
wp= 15.92; % eV
f0 = 0.096;
Gamma0 = 0.048; % eV
f1 = 0.100;
Gamma1 = 4.511; % eV
omega1 = 0.174; % eV
f2 = 0.135;
Gamma2 = 1.334; % eV
omega2 = 0.582; % eV
f3 = 0.106;
Gamma3 = 2.178; % eV
omega3 = 1.597; % eV
f4 = 0.729;
Gamma4 = 6.292; % eV
omega4 = 6.089; % eV
OmegaP = sqrt(f0) * wp; % eV
eV = 4.13566733e-1 * 2.99792458 ./ lambda;
epsilon = 1 – OmegaP^2 ./ (eV .* (eV + 1i * Gamma0));
epsilon = epsilon + f1 * wp^2 ./ ((omega1^2 – eV.^2) – 1i * eV * Gamma1);
epsilon = epsilon + f2 * wp^2 ./ ((omega2^2 – eV.^2) – 1i * eV * Gamma2);
epsilon = epsilon + f3 * wp^2 ./ ((omega3^2 – eV.^2) – 1i * eV * Gamma3);
epsilon = epsilon + f4 * wp^2 ./ ((omega4^2 – eV.^2) – 1i * eV * Gamma4);
n = real(sqrt(epsilon));
k = imag(sqrt(epsilon));
nMetal = n+1i.*k;
%NWATER
NWATER = 0.0738.*lambda.^6 – 0.6168.*lambda.^5 + 2.0263.*lambda.^4 – 3.3315.*lambda.^3 + 2.8708.*lambda.^2 – 1.2367.*lambda + 1.5411;
nAir=1+0.05792105./(238.0185-(lambda.^(-2)))+0.00167917./(57.362-(lambda.^(-2)));
% permetivity
epsMetal = nMetal.^2;
epsWATER=NWATER.^2;
%parmenter for each axes
%1 specific volume
ni=n_pc;
nt=NWATER;
%angels
thetaI =0; % incidence angle
thetaI = thetaI/180*pi;
beta=20;
beta = beta/180*pi;
fi=0;
fi =fi/180*pi;
%%%%%
a=30*10.^-9;
b=5*10.^-9;
d=2*a*cos(beta);
f=0.3;
%555
Rpp = [];
Rsp = [];
Rps = [];
Rss = [];
Tpp = [];
Tsp = [];
Tps = [];
Tss = [];
for i=1:size(lambda,2)
%snel law §
thetaT=asin(ni(i)*sin(thetaI)/nt(i));
k0=2*pi/(lambda(i)*10^-6);
VX=ni(i)*sin(thetaI);
% epsilon for compost materals SHAPE Factor
e= sqrt(1-(b/a)^2);
la=((1-e^.2)/e^2)*((log((1+e)/(1-e)))/2*e^2 -1);
lb=0.5*(1-la);
% la=((1-e^.2)/e^2)*((log((1+e)/(1-e)))/2*e^2 -1);
% lb=0.5*(1-la);
epsi=epsMetal(i);
epsh=epsWATER(i);
eps_x = epsh .* (epsh + (la.* (1 – f) + f) .* (epsi – epsh)) ./ (epsh + lb .* (1 – f) .* (epsi – epsh));
eps_y = epsh .* (epsh + (la.* (1 – f) + f) .* (epsi – epsh)) ./ (epsh + lb .* (1 – f) .* (epsi – epsh));
eps_z = epsh .* (epsh + (lb.* (1 – f) + f) .* (epsi – epsh)) ./ (epsh + la .* (1 – f) .* (epsi – epsh));
eps1=eps_x;
eps2=eps_y;
eps3=eps_z;
% eps_xx=eps_2+(eps_1*cos(beta)*cos(beta) +eps_3*sin(beta)*sin(beta) -eps_2)*cos(fi)*cos(fi);
% eps_xy=0.5*(eps_1*cos(beta)*cos(beta)+eps_3*sin(beta)*sin(beta) -eps_2)*sin(2*fi);
% eps_xz=0.5*(eps_3 -eps_1)*sin(2*beta)*cos(fi);
% eps_yx=0.5.*(eps_1.*cos(beta)*cos(beta) +eps_3.*sin(beta).*sin(beta) -eps_2).*sin(2.*fi);
% eps_yy=eps_2 +(eps_1*cos(beta)*cos(beta) +eps_3.*sin(beta).*sin(beta) -eps_2)*sin(fi)*sin(fi);
% eps_yz=0.5*(eps_3-eps_1).*sin(2.*beta).*sin(fi);
% eps_zx=0.5.*(eps_3 – eps_1).*sin(2.*beta).*cos(fi);
% eps_zy=0.5.*(eps_3 – eps_1).*sin(2.*beta).*sin(fi);
% eps_zz=eps_1+(eps_3 – eps_1).*cos(beta)*cos(beta);
% delt11= -(V_x.*eps_zx)./eps_zz;
% delt12=1 – (V_x.*V_x)./eps_zz;
% delt13=-V_x.*eps_zy./eps_zz;
% delt14=0;
% delt21=eps_xx – (eps_xz.*eps_zx)./eps_zz;
% delt22=-V_x.*eps_xz./eps_zz;
% delt23=eps_xy – (eps_xz.*eps_zy)./eps_zz;
% delt24=0;
% delt31=0;
% delt32=0;
% delt33=0;
% delt34=1;
% delt41=eps_yx- (eps_yz*eps_zx) /eps_zz;
% delt42=-V_x*eps_yz /eps_zz;
% delt43=eps_yy -(V_x.^2-eps_yz*eps_zy)./eps_zz;
% delt44=0;
% delt=[delt11 delt12 delt13 delt14 ;delt21 delt22 delt23 delt24 ;delt31 delt32 delt33 delt34;delt41 delt42 delt43 delt44];
P=exp(1)^(1i.*k0.*d.*delt);
a1 = ni(i).*(nt(i).*P(1,2)-cos(thetaT).*P(2,2))+cos(thetaI).*(nt(i).*P(1,1)-cos(thetaT).*P(2,1));
a2 = ni(i).*(nt(i).*P(1,2)-cos(thetaT)*P(2,2))-cos(thetaI).*(nt(i).*P(1,1)-cos(thetaT).*P(2,1));
a3 = (nt(i).*P(1,3)-cos(thetaT).*P(2,3))+ni(i).*cos(thetaI).*(nt(i).*P(1,4)-cos(thetaT).*P(2,4));
a4 = (nt(i).*P(1,3)-cos(thetaT).*P(2,3))-ni(i).*cos(thetaI).*(nt(i).*P(1,4)-cos(thetaT).*P(2,4));
a5 = ni(i).*(nt(i).*cos(thetaT).*P(3,2 )-P(4,2)) +cos(thetaI).*(nt(i).*cos(thetaT).*P(3,1)-P(4,1));
a6 = ni(i).*(nt(i).*cos(thetaT).*P(3,2) -P(4,2))-cos(thetaI).*(nt(i).*cos(thetaT).*P(3,1)-P(4,1));
a7 = (nt(i).*cos(thetaT).*P(3,3)-P(4,3))+ni(i).*cos(thetaI).*(nt(i).*P(3,4).*cos(thetaT)-P(4,4));
a8 = (nt(i).*cos(thetaT).*P(3,3)-P(4,3))-ni(i).*cos(thetaI).*(nt(i).*P(3,4).*cos(thetaT)-P(4,4));
b1 = (ni(i).*P(2,2)+cos(thetaI).*P(2,1))./nt(i);
b2 = (ni(i).*P(2,2)-cos(thetaI).*P(2,1))./nt(i);
b3 = (P(2,3)-ni(i).*cos(thetaI).*P(2,4))./nt(i);
b4 = (P(2,3)+ni(i).*cos(thetaI).*P(2,4))./nt(i);
b5 = ni(i).*P(3,2)+cos(thetaI).*P(3,1);
b6 = ni(i).*P(3,2)-cos(thetaI).*P(3,1);
b7 = P(3,3)-ni(i).*cos(thetaI).*P(3,4);
b8 = P(3,3)+ni(i).*cos(thetaI).*P(3,4);
rpp=(a1.*a8-a4.*a5)./(a4.*a6-a2.*a8);
rps=(a3.*a8-a4.*a7)./(a4.*a6-a2.*a8);
rsp=(a2.*a5-a1.*a6)./(a4.*a6-a2.*a8);
rss=(a2.*a7-a6.*a3)./(a4.*a6-a2.*a8);
tpp=b1+b2.*rpp+b3.*rsp;
tps=b4+b2.*rps+b3.*rss;
tsp=b5+b6.*rpp+b7.*rsp;
tss=b8+b6.*rps+b7.*rss;
Rpp = [Rpp (abs(rpp))^2];
Rsp = [Rsp (abs(rsp))^2];
Rps = [Rps (abs(rps))^2];
Rss = [Rss (abs(rss))^2];
Tpp = [Tpp (abs(tpp .*tpp.* (nt(i) .* cos(real(thetaT)) ./ni(i) .* cos(thetaI))))];
Tsp = [Tsp (abs(tsp .*tsp.* nt(i) .* cos(real(thetaT)) ./ni(i) .* cos(thetaI)))];
Tps = [Tps (abs(tps .*tps.* nt(i) .* cos(real(thetaT)) ./ni(i) .* cos(thetaI)))];
Tss = [Tss (abs(tss .*tss.* nt(i) .* cos(real(thetaT)) ./ni(i) .* cos(thetaI)))];
T=(Tpp+Tsp+Tps+Tss)/2;
R=(Rpp+Rsp+Rps+Rss)/2;
A=1-R-T;
end
figure(1)
hold on
plot(lambda*10^3,A*100,’LineWidth’, 3)
hold on
xlabel(‘Wavelength (nm)’,’fontsize’,16)
hold on
ylabel(‘Absorbtion’,’fontsize’, 16) 4×4 matrix, abeles matrix, negative absorption val, matlab MATLAB Answers — New Questions

​

Tags: matlab

Share this!

Related posts

I have got  the the liquid film surface  of x,y,z  coordinates and wall temperature data outside a 3D horizontal circular pipe from Fluent, how to calculate and output the 3D
2025-05-13

I have got the the liquid film surface of x,y,z coordinates and wall temperature data outside a 3D horizontal circular pipe from Fluent, how to calculate and output the 3D

Why are there duplicate posts in MATLAB Answers?
2025-05-13

Why are there duplicate posts in MATLAB Answers?

Why do I receive MathWorks Licensing Error 89?
2025-05-13

Why do I receive MathWorks Licensing Error 89?

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Search

Categories

  • Matlab
  • Microsoft
  • News
  • Other
Application Package Repository Telkom University

Tags

matlab microsoft opensources
Application Package Download License

Application Package Download License

Adobe
Google for Education
IBM
Matlab
Microsoft
Wordpress
Visual Paradigm
Opensource

Sign Up For Newsletters

Be the First to Know. Sign up for newsletter today

Application Package Repository Telkom University

Portal Application Package Repository Telkom University, for internal use only, empower civitas academica in study and research.

Information

  • Telkom University
  • About Us
  • Contact
  • Forum Discussion
  • FAQ
  • Helpdesk Ticket

Contact Us

  • Ask: Any question please read FAQ
  • Mail: helpdesk@telkomuniversity.ac.id
  • Call: +62 823-1994-9941
  • WA: +62 823-1994-9943
  • Site: Gedung Panambulai. Jl. Telekomunikasi

Copyright © Telkom University. All Rights Reserved. ch

  • FAQ
  • Privacy Policy
  • Term

This Application Package for internal Telkom University only (students and employee). Chiers... Dismiss