HOW CAN I TURN AN EQUATION INTO COMPONENT IN A LIBRARY?
component CantileverBeamDeflection
% Define the nodes
nodes
P = foundation.mechanical.translational.translational; % Translational node P
C = foundation.mechanical.translational.translational; % Translational node C
end
% Define the parameters
parameters
L = {1, ‘m’}; % Length of the beam
E = {210e9, ‘Pa’}; % Young’s modulus
I = {1e-6, ‘m^4’}; % Second moment of area
w = {100, ‘N/m’}; % Uniform load per unit length
x = {0.5, ‘m’}; % Distance from the fixed end
end
% Define the variables
variables
delta = {0, ‘m’}; % Deflection
end
% Define the equations
equations
% Deflection equation for a fixed-free beam under uniform load
delta == (w*x^2)/(24*E*I) * (L^3 – 2*L*x + x^2);
% Force equilibrium at nodes
P.f == -w * x;
C.f == w * x;
end
endcomponent CantileverBeamDeflection
% Define the nodes
nodes
P = foundation.mechanical.translational.translational; % Translational node P
C = foundation.mechanical.translational.translational; % Translational node C
end
% Define the parameters
parameters
L = {1, ‘m’}; % Length of the beam
E = {210e9, ‘Pa’}; % Young’s modulus
I = {1e-6, ‘m^4’}; % Second moment of area
w = {100, ‘N/m’}; % Uniform load per unit length
x = {0.5, ‘m’}; % Distance from the fixed end
end
% Define the variables
variables
delta = {0, ‘m’}; % Deflection
end
% Define the equations
equations
% Deflection equation for a fixed-free beam under uniform load
delta == (w*x^2)/(24*E*I) * (L^3 – 2*L*x + x^2);
% Force equilibrium at nodes
P.f == -w * x;
C.f == w * x;
end
end component CantileverBeamDeflection
% Define the nodes
nodes
P = foundation.mechanical.translational.translational; % Translational node P
C = foundation.mechanical.translational.translational; % Translational node C
end
% Define the parameters
parameters
L = {1, ‘m’}; % Length of the beam
E = {210e9, ‘Pa’}; % Young’s modulus
I = {1e-6, ‘m^4’}; % Second moment of area
w = {100, ‘N/m’}; % Uniform load per unit length
x = {0.5, ‘m’}; % Distance from the fixed end
end
% Define the variables
variables
delta = {0, ‘m’}; % Deflection
end
% Define the equations
equations
% Deflection equation for a fixed-free beam under uniform load
delta == (w*x^2)/(24*E*I) * (L^3 – 2*L*x + x^2);
% Force equilibrium at nodes
P.f == -w * x;
C.f == w * x;
end
end crete component in library, new custom component, equation into code MATLAB Answers — New Questions