Email: helpdesk@telkomuniversity.ac.id

This Portal for internal use only!

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • Visual Paradigm
  • IBM
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Office
      • Windows
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Categories
  • Microsoft
    • Microsoft Apps
    • Office
    • Operating System
    • VLS
    • Developer Tools
    • Productivity Tools
    • Database
    • AI + Machine Learning
    • Middleware System
    • Learning Services
    • Analytics
    • Networking
    • Compute
    • Security
    • Internet Of Things
  • Adobe
  • Matlab
  • Google
  • Visual Paradigm
  • WordPress
    • Plugin WP
    • Themes WP
  • Opensource
  • Others
More Categories Less Categories
  • Get Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • My Account
    • Download
    • Cart
    • Checkout
    • Login
  • About Us
    • Contact
    • Forum
    • Frequently Questions
    • Privacy Policy
  • Forum
    • News
      • Category
      • News Tag

iconTicket Service Desk

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • Visual Paradigm
  • IBM
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Office
      • Windows
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Menu
  • Home
    • Download Application Package Repository Telkom University
    • Application Package Repository Telkom University
    • Download Official License Telkom University
    • Download Installer Application Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • All Pack
    • Microsoft
      • Operating System
      • Productivity Tools
      • Developer Tools
      • Database
      • AI + Machine Learning
      • Middleware System
      • Networking
      • Compute
      • Security
      • Analytics
      • Internet Of Things
      • Learning Services
    • Microsoft Apps
      • VLS
    • Adobe
    • Matlab
    • WordPress
      • Themes WP
      • Plugin WP
    • Google
    • Opensource
    • Others
  • My account
    • Download
    • Get Pack
    • Cart
    • Checkout
  • News
    • Category
    • News Tag
  • Forum
  • About Us
    • Privacy Policy
    • Frequently Questions
    • Contact
Home/Matlab/How to simulate permanent magnets using the PDE Toolbox in R2025a

How to simulate permanent magnets using the PDE Toolbox in R2025a

PuTI / 2025-01-30
How to simulate permanent magnets using the PDE Toolbox in R2025a
Matlab News

I am trying to model and visualize two permanent magnet spheres using the below code snippet:

function twoMagnets_femodel_demo()
clc; clear; close all;
% ——————————-
% 1) Define geometry parameters
% ——————————-
% Let’s assume "1/2-inch magnets" => diameter = 0.5 inch => radius = 0.25 in
% 1 inch ~ 0.0254 m, so 0.25 in ~ 0.00635 m
R_sphere = 0.00635; % [m]

% Bounding box of ~5 cm each side
boxDim = 0.05; % [m]
% ——————————-
% 2) Build geometry parts
% ——————————-
% (a) Air region: bounding box
boxGm = multicuboid(boxDim, boxDim, boxDim);
% (b) Sphere #1
sphere1Gm = multisphere(R_sphere);
% (c) Sphere #2
sphere2Gm = multisphere(R_sphere);
% Translate spheres so that they’re centered in the box, side-by-side
% Let the box corners go from (0,0,0) to (0.05,0.05,0.05), so center ~ (0.025,0.025,0.025)
centerBox = [0.025, 0.025, 0.025];
offset1 = centerBox + [-R_sphere, 0, 0]; % shift left in x
offset2 = centerBox + [ R_sphere, 0, 0]; % shift right in x
sphere1Gm = translate(sphere1Gm, offset1);
sphere2Gm = translate(sphere2Gm, offset2);
% ——————————-
% 3) Combine geometries
% ——————————-
% addCell(…) is the new PDE Toolbox function that
% keeps each shape as a separate "cell" in the final geometry.
gm = addCell(boxGm, sphere1Gm);
gm = addCell(gm, sphere2Gm);
% Visualize & label
figure;
pdegplot(gm, FaceAlpha=0.2, CellLabels="on");
title("Bounding Box + Two Spheres");
axis equal
% At this point we should see "Cell #1 = bounding box, #2 = first sphere, #3 = second sphere"
% ——————————-
% 4) Create femodel for magnetostatics
% ——————————-
model = femodel(AnalysisType="magnetostatic", Geometry=gm);
% Specify vacuum permeability in SI (H/m)
model.VacuumPermeability = 4*pi*1e-7; % ~ 1.2566370614e-6
% ——————————-
% 5) Set material properties
% ——————————-
% We have 3 cells:
% 1 => bounding box (air)
% 2 => sphere #1
% 3 => sphere #2
%
% For air and the spheres, assume relative permeability ~ 1
model.MaterialProperties(1) = materialProperties(RelativePermeability=1);
model.MaterialProperties(2) = materialProperties(RelativePermeability=1);
model.MaterialProperties(3) = materialProperties(RelativePermeability=1);
% ——————————-
% 6) Assign magnetization
% ——————————-
% In new PDE Toolbox, you can set magnetization on the "CellLoad" for a subdomain (cell).
% Suppose sphere #1 is magnetized in +z; sphere #2 in -z.
% For a typical neodymium magnet, you might set M ~ 1e5 or 1e6 A/m.
M1 = [0; 0; 1e5];
M2 = [0; 0;-1e5];
model.CellLoad(2) = cellLoad(Magnetization=M1); % sphere1
model.CellLoad(3) = cellLoad(Magnetization=M2); % sphere2
% ——————————-
% 7) Boundary conditions
% ——————————-
% Typically, you’d set a "zero" magnetic potential (A = 0) on the outer faces
% of the bounding box to approximate an open boundary.
% Identify the face IDs of the bounding box:
% pdegplot(gm, FaceAlpha=0.1, CellLabels="on", FaceLabels="on")
% The bounding box typically has 6 faces with IDs [1..6].
% So we do:
model.FaceBC(1:6) = faceBC(MagneticPotential=[0;0;0]);
% (If you find different face numbering, adjust accordingly.)
% ——————————-
% 8) Generate mesh
% ——————————-
% We can specify "Hcell" to refine the mesh in certain cells, e.g. the magnets,
% or keep it uniform. For example, refine in cells 2 & 3 (the spheres):
internalCells = [2 3];
model = generateMesh(model, Hcell={internalCells, R_sphere/3});
% ——————————-
% 9) Solve
% ——————————-
R = solve(model);
% R is a MagnetostaticResults object with fields:
% R.MagneticPotential, R.MagneticField, R.MagneticFluxDensity, R.Mesh, etc.
% ——————————-
% 10) Postprocessing
% ——————————-
% Extract Bx, By, Bz at the mesh nodes
Bx = R.MagneticFluxDensity.Bx;
By = R.MagneticFluxDensity.By;
Bz = R.MagneticFluxDensity.Bz;
Bmag = sqrt(Bx.^2 + By.^2 + Bz.^2);
% Simple 3D plot of |B|
figure;
pdeplot3D(R.Mesh, ColorMapData=Bmag);
title("|B| flux density magnitude");
colorbar;
% Optionally, a vector plot:
figure;
pdeplot3D(R.Mesh, FlowData=[Bx By Bz]);
title("Magnetic Field Vectors");
end
While logically complete, the above code doesn’t work. The current error I am struggling with is that addCell() only works inside the original geometry. And throws the following error here:
Error using pde.DiscreteGeometry/addCell
Added cells must be located strictly inside a single cell of the original geometry.
Error in
TwoMagnets (line 38)
gm = addCell(boxGm, sphere1Gm);
^^^^^^^^^^^^^^^^^^^^^^^^^

Is there an example script on how to simulate permanent magnets using the latest PDE Toolbox?I am trying to model and visualize two permanent magnet spheres using the below code snippet:

function twoMagnets_femodel_demo()
clc; clear; close all;
% ——————————-
% 1) Define geometry parameters
% ——————————-
% Let’s assume "1/2-inch magnets" => diameter = 0.5 inch => radius = 0.25 in
% 1 inch ~ 0.0254 m, so 0.25 in ~ 0.00635 m
R_sphere = 0.00635; % [m]

% Bounding box of ~5 cm each side
boxDim = 0.05; % [m]
% ——————————-
% 2) Build geometry parts
% ——————————-
% (a) Air region: bounding box
boxGm = multicuboid(boxDim, boxDim, boxDim);
% (b) Sphere #1
sphere1Gm = multisphere(R_sphere);
% (c) Sphere #2
sphere2Gm = multisphere(R_sphere);
% Translate spheres so that they’re centered in the box, side-by-side
% Let the box corners go from (0,0,0) to (0.05,0.05,0.05), so center ~ (0.025,0.025,0.025)
centerBox = [0.025, 0.025, 0.025];
offset1 = centerBox + [-R_sphere, 0, 0]; % shift left in x
offset2 = centerBox + [ R_sphere, 0, 0]; % shift right in x
sphere1Gm = translate(sphere1Gm, offset1);
sphere2Gm = translate(sphere2Gm, offset2);
% ——————————-
% 3) Combine geometries
% ——————————-
% addCell(…) is the new PDE Toolbox function that
% keeps each shape as a separate "cell" in the final geometry.
gm = addCell(boxGm, sphere1Gm);
gm = addCell(gm, sphere2Gm);
% Visualize & label
figure;
pdegplot(gm, FaceAlpha=0.2, CellLabels="on");
title("Bounding Box + Two Spheres");
axis equal
% At this point we should see "Cell #1 = bounding box, #2 = first sphere, #3 = second sphere"
% ——————————-
% 4) Create femodel for magnetostatics
% ——————————-
model = femodel(AnalysisType="magnetostatic", Geometry=gm);
% Specify vacuum permeability in SI (H/m)
model.VacuumPermeability = 4*pi*1e-7; % ~ 1.2566370614e-6
% ——————————-
% 5) Set material properties
% ——————————-
% We have 3 cells:
% 1 => bounding box (air)
% 2 => sphere #1
% 3 => sphere #2
%
% For air and the spheres, assume relative permeability ~ 1
model.MaterialProperties(1) = materialProperties(RelativePermeability=1);
model.MaterialProperties(2) = materialProperties(RelativePermeability=1);
model.MaterialProperties(3) = materialProperties(RelativePermeability=1);
% ——————————-
% 6) Assign magnetization
% ——————————-
% In new PDE Toolbox, you can set magnetization on the "CellLoad" for a subdomain (cell).
% Suppose sphere #1 is magnetized in +z; sphere #2 in -z.
% For a typical neodymium magnet, you might set M ~ 1e5 or 1e6 A/m.
M1 = [0; 0; 1e5];
M2 = [0; 0;-1e5];
model.CellLoad(2) = cellLoad(Magnetization=M1); % sphere1
model.CellLoad(3) = cellLoad(Magnetization=M2); % sphere2
% ——————————-
% 7) Boundary conditions
% ——————————-
% Typically, you’d set a "zero" magnetic potential (A = 0) on the outer faces
% of the bounding box to approximate an open boundary.
% Identify the face IDs of the bounding box:
% pdegplot(gm, FaceAlpha=0.1, CellLabels="on", FaceLabels="on")
% The bounding box typically has 6 faces with IDs [1..6].
% So we do:
model.FaceBC(1:6) = faceBC(MagneticPotential=[0;0;0]);
% (If you find different face numbering, adjust accordingly.)
% ——————————-
% 8) Generate mesh
% ——————————-
% We can specify "Hcell" to refine the mesh in certain cells, e.g. the magnets,
% or keep it uniform. For example, refine in cells 2 & 3 (the spheres):
internalCells = [2 3];
model = generateMesh(model, Hcell={internalCells, R_sphere/3});
% ——————————-
% 9) Solve
% ——————————-
R = solve(model);
% R is a MagnetostaticResults object with fields:
% R.MagneticPotential, R.MagneticField, R.MagneticFluxDensity, R.Mesh, etc.
% ——————————-
% 10) Postprocessing
% ——————————-
% Extract Bx, By, Bz at the mesh nodes
Bx = R.MagneticFluxDensity.Bx;
By = R.MagneticFluxDensity.By;
Bz = R.MagneticFluxDensity.Bz;
Bmag = sqrt(Bx.^2 + By.^2 + Bz.^2);
% Simple 3D plot of |B|
figure;
pdeplot3D(R.Mesh, ColorMapData=Bmag);
title("|B| flux density magnitude");
colorbar;
% Optionally, a vector plot:
figure;
pdeplot3D(R.Mesh, FlowData=[Bx By Bz]);
title("Magnetic Field Vectors");
end
While logically complete, the above code doesn’t work. The current error I am struggling with is that addCell() only works inside the original geometry. And throws the following error here:
Error using pde.DiscreteGeometry/addCell
Added cells must be located strictly inside a single cell of the original geometry.
Error in
TwoMagnets (line 38)
gm = addCell(boxGm, sphere1Gm);
^^^^^^^^^^^^^^^^^^^^^^^^^

Is there an example script on how to simulate permanent magnets using the latest PDE Toolbox? I am trying to model and visualize two permanent magnet spheres using the below code snippet:

function twoMagnets_femodel_demo()
clc; clear; close all;
% ——————————-
% 1) Define geometry parameters
% ——————————-
% Let’s assume "1/2-inch magnets" => diameter = 0.5 inch => radius = 0.25 in
% 1 inch ~ 0.0254 m, so 0.25 in ~ 0.00635 m
R_sphere = 0.00635; % [m]

% Bounding box of ~5 cm each side
boxDim = 0.05; % [m]
% ——————————-
% 2) Build geometry parts
% ——————————-
% (a) Air region: bounding box
boxGm = multicuboid(boxDim, boxDim, boxDim);
% (b) Sphere #1
sphere1Gm = multisphere(R_sphere);
% (c) Sphere #2
sphere2Gm = multisphere(R_sphere);
% Translate spheres so that they’re centered in the box, side-by-side
% Let the box corners go from (0,0,0) to (0.05,0.05,0.05), so center ~ (0.025,0.025,0.025)
centerBox = [0.025, 0.025, 0.025];
offset1 = centerBox + [-R_sphere, 0, 0]; % shift left in x
offset2 = centerBox + [ R_sphere, 0, 0]; % shift right in x
sphere1Gm = translate(sphere1Gm, offset1);
sphere2Gm = translate(sphere2Gm, offset2);
% ——————————-
% 3) Combine geometries
% ——————————-
% addCell(…) is the new PDE Toolbox function that
% keeps each shape as a separate "cell" in the final geometry.
gm = addCell(boxGm, sphere1Gm);
gm = addCell(gm, sphere2Gm);
% Visualize & label
figure;
pdegplot(gm, FaceAlpha=0.2, CellLabels="on");
title("Bounding Box + Two Spheres");
axis equal
% At this point we should see "Cell #1 = bounding box, #2 = first sphere, #3 = second sphere"
% ——————————-
% 4) Create femodel for magnetostatics
% ——————————-
model = femodel(AnalysisType="magnetostatic", Geometry=gm);
% Specify vacuum permeability in SI (H/m)
model.VacuumPermeability = 4*pi*1e-7; % ~ 1.2566370614e-6
% ——————————-
% 5) Set material properties
% ——————————-
% We have 3 cells:
% 1 => bounding box (air)
% 2 => sphere #1
% 3 => sphere #2
%
% For air and the spheres, assume relative permeability ~ 1
model.MaterialProperties(1) = materialProperties(RelativePermeability=1);
model.MaterialProperties(2) = materialProperties(RelativePermeability=1);
model.MaterialProperties(3) = materialProperties(RelativePermeability=1);
% ——————————-
% 6) Assign magnetization
% ——————————-
% In new PDE Toolbox, you can set magnetization on the "CellLoad" for a subdomain (cell).
% Suppose sphere #1 is magnetized in +z; sphere #2 in -z.
% For a typical neodymium magnet, you might set M ~ 1e5 or 1e6 A/m.
M1 = [0; 0; 1e5];
M2 = [0; 0;-1e5];
model.CellLoad(2) = cellLoad(Magnetization=M1); % sphere1
model.CellLoad(3) = cellLoad(Magnetization=M2); % sphere2
% ——————————-
% 7) Boundary conditions
% ——————————-
% Typically, you’d set a "zero" magnetic potential (A = 0) on the outer faces
% of the bounding box to approximate an open boundary.
% Identify the face IDs of the bounding box:
% pdegplot(gm, FaceAlpha=0.1, CellLabels="on", FaceLabels="on")
% The bounding box typically has 6 faces with IDs [1..6].
% So we do:
model.FaceBC(1:6) = faceBC(MagneticPotential=[0;0;0]);
% (If you find different face numbering, adjust accordingly.)
% ——————————-
% 8) Generate mesh
% ——————————-
% We can specify "Hcell" to refine the mesh in certain cells, e.g. the magnets,
% or keep it uniform. For example, refine in cells 2 & 3 (the spheres):
internalCells = [2 3];
model = generateMesh(model, Hcell={internalCells, R_sphere/3});
% ——————————-
% 9) Solve
% ——————————-
R = solve(model);
% R is a MagnetostaticResults object with fields:
% R.MagneticPotential, R.MagneticField, R.MagneticFluxDensity, R.Mesh, etc.
% ——————————-
% 10) Postprocessing
% ——————————-
% Extract Bx, By, Bz at the mesh nodes
Bx = R.MagneticFluxDensity.Bx;
By = R.MagneticFluxDensity.By;
Bz = R.MagneticFluxDensity.Bz;
Bmag = sqrt(Bx.^2 + By.^2 + Bz.^2);
% Simple 3D plot of |B|
figure;
pdeplot3D(R.Mesh, ColorMapData=Bmag);
title("|B| flux density magnitude");
colorbar;
% Optionally, a vector plot:
figure;
pdeplot3D(R.Mesh, FlowData=[Bx By Bz]);
title("Magnetic Field Vectors");
end
While logically complete, the above code doesn’t work. The current error I am struggling with is that addCell() only works inside the original geometry. And throws the following error here:
Error using pde.DiscreteGeometry/addCell
Added cells must be located strictly inside a single cell of the original geometry.
Error in
TwoMagnets (line 38)
gm = addCell(boxGm, sphere1Gm);
^^^^^^^^^^^^^^^^^^^^^^^^^

Is there an example script on how to simulate permanent magnets using the latest PDE Toolbox? pde, matlab code, mesh MATLAB Answers — New Questions

​

Tags: matlab

Share this!

Related posts

test one two three four
2025-05-20

test one two three four

Is it possible to make this tiny loop faster?
2025-05-19

Is it possible to make this tiny loop faster?

Solar Wind Battery Hybrid Integration
2025-05-19

Solar Wind Battery Hybrid Integration

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Search

Categories

  • Matlab
  • Microsoft
  • News
  • Other
Application Package Repository Telkom University

Tags

matlab microsoft opensources
Application Package Download License

Application Package Download License

Adobe
Google for Education
IBM
Matlab
Microsoft
Wordpress
Visual Paradigm
Opensource

Sign Up For Newsletters

Be the First to Know. Sign up for newsletter today

Application Package Repository Telkom University

Portal Application Package Repository Telkom University, for internal use only, empower civitas academica in study and research.

Information

  • Telkom University
  • About Us
  • Contact
  • Forum Discussion
  • FAQ
  • Helpdesk Ticket

Contact Us

  • Ask: Any question please read FAQ
  • Mail: helpdesk@telkomuniversity.ac.id
  • Call: +62 823-1994-9941
  • WA: +62 823-1994-9943
  • Site: Gedung Panambulai. Jl. Telekomunikasi

Copyright © Telkom University. All Rights Reserved. ch

  • FAQ
  • Privacy Policy
  • Term

This Application Package for internal Telkom University only (students and employee). Chiers... Dismiss