Email: helpdesk@telkomuniversity.ac.id

This Portal for internal use only!

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • Visual Paradigm
  • IBM
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Windows
      • Office
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Categories
  • Microsoft
    • Microsoft Apps
    • Office
    • Operating System
    • VLS
    • Developer Tools
    • Productivity Tools
    • Database
    • AI + Machine Learning
    • Middleware System
    • Learning Services
    • Analytics
    • Networking
    • Compute
    • Security
    • Internet Of Things
  • Adobe
  • Matlab
  • Google
  • Visual Paradigm
  • WordPress
    • Plugin WP
    • Themes WP
  • Opensource
  • Others
More Categories Less Categories
  • Get Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • My Account
    • Download
    • Cart
    • Checkout
    • Login
  • About Us
    • Contact
    • Forum
    • Frequently Questions
    • Privacy Policy
  • Forum
    • News
      • Category
      • News Tag

iconTicket Service Desk

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • Visual Paradigm
  • IBM
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Windows
      • Office
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Menu
  • Home
    • Download Application Package Repository Telkom University
    • Application Package Repository Telkom University
    • Download Official License Telkom University
    • Download Installer Application Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • All Pack
    • Microsoft
      • Operating System
      • Productivity Tools
      • Developer Tools
      • Database
      • AI + Machine Learning
      • Middleware System
      • Networking
      • Compute
      • Security
      • Analytics
      • Internet Of Things
      • Learning Services
    • Microsoft Apps
      • VLS
    • Adobe
    • Matlab
    • WordPress
      • Themes WP
      • Plugin WP
    • Google
    • Opensource
    • Others
  • My account
    • Download
    • Get Pack
    • Cart
    • Checkout
  • News
    • Category
    • News Tag
  • Forum
  • About Us
    • Privacy Policy
    • Frequently Questions
    • Contact
Home/Matlab/how to solve this error ?

how to solve this error ?

PuTI / 2025-01-23
how to solve this error ?
Matlab News

In this code, MATLAB gives me the following issue: For the solving function, how can I correct this error?
Error using sym/vpasolve:
Unable to find variables in equations.
Error in ni_water_simulationburgemanforchatgbt (line 99):
`solutions = vpasolve(eq, epsilon_mg, min(epsi, epsh), max(epsi, epsh));`

clear all
lambda = 500*10^-3:10*10^-3:2500*10^-3; % in microns
A1= 1.4182;
B1= 0.021304;
n_pc=sqrt(1+(A1.*lambda.^2)./(lambda.^2-B1));
wp= 15.92; % eV
f0 = 0.096;
Gamma0 = 0.048; % eV
f1 = 0.100;
Gamma1 = 4.511; % eV
omega1 = 0.174; % eV
f2 = 0.135;
Gamma2 = 1.334; % eV
omega2 = 0.582; % eV
f3 = 0.106;
Gamma3 = 2.178; % eV
omega3 = 1.597; % eV
f4 = 0.729;
Gamma4 = 6.292; % eV
omega4 = 6.089; % eV
OmegaP = sqrt(f0) * wp; % eV
eV = 4.13566733e-1 * 2.99792458 ./ lambda;
epsilon = 1 – OmegaP^2 ./ (eV .* (eV + 1i * Gamma0));
epsilon = epsilon + f1 * wp^2 ./ ((omega1^2 – eV.^2) – 1i * eV * Gamma1);
epsilon = epsilon + f2 * wp^2 ./ ((omega2^2 – eV.^2) – 1i * eV * Gamma2);
epsilon = epsilon + f3 * wp^2 ./ ((omega3^2 – eV.^2) – 1i * eV * Gamma3);
epsilon = epsilon + f4 * wp^2 ./ ((omega4^2 – eV.^2) – 1i * eV * Gamma4);
n = real(sqrt(epsilon));
k = imag(sqrt(epsilon));
nMetal = n+1i.*k;
%NWATER
NWATER = 0.0738.*lambda.^6 – 0.6168.*lambda.^5 + 2.0263.*lambda.^4 – 3.3315.*lambda.^3 + 2.8708.*lambda.^2 – 1.2367.*lambda + 1.5411;
nAir=1+0.05792105./(238.0185-(lambda.^(-2)))+0.00167917./(57.362-(lambda.^(-2)));
% permetivity
epsMetal = nMetal.^2;
epsWATER=NWATER.^2;
%parmenter for each axes
%1 specific volume
ni=n_pc;
nt=NWATER;
%angels
thetaI =0; % incidence angle
thetaI = thetaI/180*pi;
beta=20;
beta = beta/180*pi;
fi=0;
fi=fi/180*pi;
%%%%%
a=20*10.^-9;
b=5*10.^-9;
d=2*a*cos(beta);
fi=0.3;
fh=1-fi;
Rpp = [];
Rsp = [];
Rps = [];
Rss = [];
Tpp = [];
Tsp = [];
Tps = [];
Tss = [];
% epsilon for compost materals SHAPE Factor
e= sqrt(1-(b/a)^2);
la=((1-e^.2)/e^2)*((log((1+e)/(1-e)))/2*e^2 -1);
lb=0.5*(1-la);
% Symbolic variable for epsilon_mg
syms epsilon_mg
%%%%%%%%
for i=1:size(lambda,2)
%snel law §
thetaT=asin(ni(i)*sin(thetaI)/nt(i));
k0=2*pi/(lambda(i)*10^-6);
VX=ni(i)*sin(thetaI);
epsi=epsMetal(i);
epsh=epsWATER(i);

% Bruggeman mixing formula
eq = fi * (epsi – epsilon_mg) / (epsilon_mg + la * (epsi – epsilon_mg)) +(1 – fi) * (epsh – epsilon_mg) / (epsilon_mg + lb * (epsh – epsilon_mg)) == 0;
% Solve equation with positive imaginary part
solutions = vpasolve(eq, epsilon_mg, [min(epsi, epsh), max(epsi, epsh)]);
positive_imaginary = solutions(imag(solutions) > 0);
if ~isempty(positive_imaginary)
epsilon_mg = positive_imaginary(1);
else
error(‘No solution with positive imaginary part found at index %d’, i);

end
eps1=epsilon_mg;
eps2=epsilon_mg;
eps3=epsilon_mg;
exx=eps2 +(eps1.*cos(beta).*cos(beta) +eps3.*sin(beta).*sin(beta) -eps2).*cos(fi).*cos(fi);
exy=0.5.*(eps1.*cos(beta).*cos(beta) +eps3.*sin(beta).*sin(beta) – eps2).*sin(2.*fi);
exz=0.5.*(eps3-eps1).*sin(2.*beta).*cos(fi);
eyy=eps2 +(eps1.*cos(beta).*cos(beta) +eps3.*sin(beta).*sin(beta) – eps2).*sin(fi).*sin(fi);
eyz=0.5.*(eps3-eps1).*sin(2.*beta).*sin(fi);
ezz=eps1 +(eps3 -eps1).*cos(beta).*cos(beta);
eyx=exy;
ezx=exz;
ezy=eyz;
del = [-VX.*ezx./ezz 1-(VX.*VX)./ezz -VX.*ezy./ezz 0; exx-(exz.*ezx)./ezz -VX.*exz./ezz exy-exz.*ezy./ezz 0; 0 0 0 1; eyx-(eyz.*ezx)./ezz -VX.*eyz./ezz eyy-(VX.*VX)-(eyz.*ezy)./ezz 0];
P=exp(1)^(1i.*k0.*d.*del);
a1 = ni(i).*(nt(i).*P(1,2)-cos(thetaT).*P(2,2))+cos(thetaI).*(nt(i).*P(1,1)-cos(thetaT).*P(2,1));
a2 = ni(i).*(nt(i).*P(1,2)-cos(thetaT)*P(2,2))-cos(thetaI).*(nt(i).*P(1,1)-cos(thetaT).*P(2,1));
a3 = (nt(i).*P(1,3)-cos(thetaT).*P(2,3))+ni(i).*cos(thetaI).*(nt(i).*P(1,4)-cos(thetaT).*P(2,4));
a4 = (nt(i).*P(1,3)-cos(thetaT).*P(2,3))-ni(i).*cos(thetaI).*(nt(i).*P(1,4)-cos(thetaT).*P(2,4));
a5 = ni(i).*(nt(i).*cos(thetaT).*P(3,2 )-P(4,2)) +cos(thetaI).*(nt(i).*cos(thetaT).*P(3,1)-P(4,1));
a6 = ni(i).*(nt(i).*cos(thetaT).*P(3,2) -P(4,2))-cos(thetaI).*(nt(i).*cos(thetaT).*P(3,1)-P(4,1));
a7 = (nt(i).*cos(thetaT).*P(3,3)-P(4,3))+ni(i).*cos(thetaI).*(nt(i).*P(3,4).*cos(thetaT)-P(4,4));
a8 = (nt(i).*cos(thetaT).*P(3,3)-P(4,3))-ni(i).*cos(thetaI).*(nt(i).*P(3,4).*cos(thetaT)-P(4,4));
b1 = (ni(i).*P(2,2)+cos(thetaI).*P(2,1))./nt(i);
b2 = (ni(i).*P(2,2)-cos(thetaI).*P(2,1))./nt(i);
b3 = (P(2,3)-ni(i).*cos(thetaI).*P(2,4))./nt(i);
b4 = (P(2,3)+ni(i).*cos(thetaI).*P(2,4))./nt(i);
b5 = ni(i).*P(3,2)+cos(thetaI).*P(3,1);
b6 = ni(i).*P(3,2)-cos(thetaI).*P(3,1);
b7 = P(3,3)-ni(i).*cos(thetaI).*P(3,4);
b8 = P(3,3)+ni(i).*cos(thetaI).*P(3,4);
rpp=(a1.*a8-a4.*a5)./(a4.*a6-a2.*a8);
rps=(a3.*a8-a4.*a7)./(a4.*a6-a2.*a8);
rsp=(a2.*a5-a1.*a6)./(a4.*a6-a2.*a8);
rss=(a2.*a7-a6.*a3)./(a4.*a6-a2.*a8);
tpp=b1+b2.*rpp+b3.*rsp;
tps=b4+b2.*rps+b3.*rss;
tsp=b5+b6.*rpp+b7.*rsp;
tss=b8+b6.*rps+b7.*rss;
Rpp = [Rpp (abs(rpp))^2];
Rsp = [Rsp (abs(rsp))^2];
Rps = [Rps (abs(rps))^2];
Rss = [Rss (abs(rss))^2];
Tpp = [Tpp (nt(i) .* cos(thetaI) ./ ni(i) .* cos(real(thetaT))).*(abs(tpp )^2)];
Tss = [Tss (nt(i) .* cos(real(thetaT)) ./ ni(i) .* cos(thetaI)).*(abs(tss )^2)];
Tsp = [Tsp (nt(i) .* cos(real(thetaT)) ./ ni(i) .* cos(thetaI)).*(abs(tsp )^2)];
Tps = [Tps (nt(i) .* cos(real(thetaT)) ./ ni(i) .* cos(thetaI)).*(abs(tps )^2)];
T=(Tpp+Tsp+Tps+Tss)/2;
R=(Rpp+Rsp+Rps+Rss)/2;
A=1-R-T;
end
figure(1)
hold on
plot(lambda*10^3,A*100,’LineWidth’, 3)
hold on
xlabel(‘Wavelength (nm)’,’fontsize’,16)
hold on
ylabel(‘Absorbtion’,’fontsize’, 16)
figure(2)
hold on
plot(lambda*10^3,T*100,’LineWidth’, 3)
hold on
xlabel(‘Wavelength (nm)’,’fontsize’,16)
hold on
ylabel(‘Transmission’,’fontsize’, 16)In this code, MATLAB gives me the following issue: For the solving function, how can I correct this error?
Error using sym/vpasolve:
Unable to find variables in equations.
Error in ni_water_simulationburgemanforchatgbt (line 99):
`solutions = vpasolve(eq, epsilon_mg, min(epsi, epsh), max(epsi, epsh));`

clear all
lambda = 500*10^-3:10*10^-3:2500*10^-3; % in microns
A1= 1.4182;
B1= 0.021304;
n_pc=sqrt(1+(A1.*lambda.^2)./(lambda.^2-B1));
wp= 15.92; % eV
f0 = 0.096;
Gamma0 = 0.048; % eV
f1 = 0.100;
Gamma1 = 4.511; % eV
omega1 = 0.174; % eV
f2 = 0.135;
Gamma2 = 1.334; % eV
omega2 = 0.582; % eV
f3 = 0.106;
Gamma3 = 2.178; % eV
omega3 = 1.597; % eV
f4 = 0.729;
Gamma4 = 6.292; % eV
omega4 = 6.089; % eV
OmegaP = sqrt(f0) * wp; % eV
eV = 4.13566733e-1 * 2.99792458 ./ lambda;
epsilon = 1 – OmegaP^2 ./ (eV .* (eV + 1i * Gamma0));
epsilon = epsilon + f1 * wp^2 ./ ((omega1^2 – eV.^2) – 1i * eV * Gamma1);
epsilon = epsilon + f2 * wp^2 ./ ((omega2^2 – eV.^2) – 1i * eV * Gamma2);
epsilon = epsilon + f3 * wp^2 ./ ((omega3^2 – eV.^2) – 1i * eV * Gamma3);
epsilon = epsilon + f4 * wp^2 ./ ((omega4^2 – eV.^2) – 1i * eV * Gamma4);
n = real(sqrt(epsilon));
k = imag(sqrt(epsilon));
nMetal = n+1i.*k;
%NWATER
NWATER = 0.0738.*lambda.^6 – 0.6168.*lambda.^5 + 2.0263.*lambda.^4 – 3.3315.*lambda.^3 + 2.8708.*lambda.^2 – 1.2367.*lambda + 1.5411;
nAir=1+0.05792105./(238.0185-(lambda.^(-2)))+0.00167917./(57.362-(lambda.^(-2)));
% permetivity
epsMetal = nMetal.^2;
epsWATER=NWATER.^2;
%parmenter for each axes
%1 specific volume
ni=n_pc;
nt=NWATER;
%angels
thetaI =0; % incidence angle
thetaI = thetaI/180*pi;
beta=20;
beta = beta/180*pi;
fi=0;
fi=fi/180*pi;
%%%%%
a=20*10.^-9;
b=5*10.^-9;
d=2*a*cos(beta);
fi=0.3;
fh=1-fi;
Rpp = [];
Rsp = [];
Rps = [];
Rss = [];
Tpp = [];
Tsp = [];
Tps = [];
Tss = [];
% epsilon for compost materals SHAPE Factor
e= sqrt(1-(b/a)^2);
la=((1-e^.2)/e^2)*((log((1+e)/(1-e)))/2*e^2 -1);
lb=0.5*(1-la);
% Symbolic variable for epsilon_mg
syms epsilon_mg
%%%%%%%%
for i=1:size(lambda,2)
%snel law §
thetaT=asin(ni(i)*sin(thetaI)/nt(i));
k0=2*pi/(lambda(i)*10^-6);
VX=ni(i)*sin(thetaI);
epsi=epsMetal(i);
epsh=epsWATER(i);

% Bruggeman mixing formula
eq = fi * (epsi – epsilon_mg) / (epsilon_mg + la * (epsi – epsilon_mg)) +(1 – fi) * (epsh – epsilon_mg) / (epsilon_mg + lb * (epsh – epsilon_mg)) == 0;
% Solve equation with positive imaginary part
solutions = vpasolve(eq, epsilon_mg, [min(epsi, epsh), max(epsi, epsh)]);
positive_imaginary = solutions(imag(solutions) > 0);
if ~isempty(positive_imaginary)
epsilon_mg = positive_imaginary(1);
else
error(‘No solution with positive imaginary part found at index %d’, i);

end
eps1=epsilon_mg;
eps2=epsilon_mg;
eps3=epsilon_mg;
exx=eps2 +(eps1.*cos(beta).*cos(beta) +eps3.*sin(beta).*sin(beta) -eps2).*cos(fi).*cos(fi);
exy=0.5.*(eps1.*cos(beta).*cos(beta) +eps3.*sin(beta).*sin(beta) – eps2).*sin(2.*fi);
exz=0.5.*(eps3-eps1).*sin(2.*beta).*cos(fi);
eyy=eps2 +(eps1.*cos(beta).*cos(beta) +eps3.*sin(beta).*sin(beta) – eps2).*sin(fi).*sin(fi);
eyz=0.5.*(eps3-eps1).*sin(2.*beta).*sin(fi);
ezz=eps1 +(eps3 -eps1).*cos(beta).*cos(beta);
eyx=exy;
ezx=exz;
ezy=eyz;
del = [-VX.*ezx./ezz 1-(VX.*VX)./ezz -VX.*ezy./ezz 0; exx-(exz.*ezx)./ezz -VX.*exz./ezz exy-exz.*ezy./ezz 0; 0 0 0 1; eyx-(eyz.*ezx)./ezz -VX.*eyz./ezz eyy-(VX.*VX)-(eyz.*ezy)./ezz 0];
P=exp(1)^(1i.*k0.*d.*del);
a1 = ni(i).*(nt(i).*P(1,2)-cos(thetaT).*P(2,2))+cos(thetaI).*(nt(i).*P(1,1)-cos(thetaT).*P(2,1));
a2 = ni(i).*(nt(i).*P(1,2)-cos(thetaT)*P(2,2))-cos(thetaI).*(nt(i).*P(1,1)-cos(thetaT).*P(2,1));
a3 = (nt(i).*P(1,3)-cos(thetaT).*P(2,3))+ni(i).*cos(thetaI).*(nt(i).*P(1,4)-cos(thetaT).*P(2,4));
a4 = (nt(i).*P(1,3)-cos(thetaT).*P(2,3))-ni(i).*cos(thetaI).*(nt(i).*P(1,4)-cos(thetaT).*P(2,4));
a5 = ni(i).*(nt(i).*cos(thetaT).*P(3,2 )-P(4,2)) +cos(thetaI).*(nt(i).*cos(thetaT).*P(3,1)-P(4,1));
a6 = ni(i).*(nt(i).*cos(thetaT).*P(3,2) -P(4,2))-cos(thetaI).*(nt(i).*cos(thetaT).*P(3,1)-P(4,1));
a7 = (nt(i).*cos(thetaT).*P(3,3)-P(4,3))+ni(i).*cos(thetaI).*(nt(i).*P(3,4).*cos(thetaT)-P(4,4));
a8 = (nt(i).*cos(thetaT).*P(3,3)-P(4,3))-ni(i).*cos(thetaI).*(nt(i).*P(3,4).*cos(thetaT)-P(4,4));
b1 = (ni(i).*P(2,2)+cos(thetaI).*P(2,1))./nt(i);
b2 = (ni(i).*P(2,2)-cos(thetaI).*P(2,1))./nt(i);
b3 = (P(2,3)-ni(i).*cos(thetaI).*P(2,4))./nt(i);
b4 = (P(2,3)+ni(i).*cos(thetaI).*P(2,4))./nt(i);
b5 = ni(i).*P(3,2)+cos(thetaI).*P(3,1);
b6 = ni(i).*P(3,2)-cos(thetaI).*P(3,1);
b7 = P(3,3)-ni(i).*cos(thetaI).*P(3,4);
b8 = P(3,3)+ni(i).*cos(thetaI).*P(3,4);
rpp=(a1.*a8-a4.*a5)./(a4.*a6-a2.*a8);
rps=(a3.*a8-a4.*a7)./(a4.*a6-a2.*a8);
rsp=(a2.*a5-a1.*a6)./(a4.*a6-a2.*a8);
rss=(a2.*a7-a6.*a3)./(a4.*a6-a2.*a8);
tpp=b1+b2.*rpp+b3.*rsp;
tps=b4+b2.*rps+b3.*rss;
tsp=b5+b6.*rpp+b7.*rsp;
tss=b8+b6.*rps+b7.*rss;
Rpp = [Rpp (abs(rpp))^2];
Rsp = [Rsp (abs(rsp))^2];
Rps = [Rps (abs(rps))^2];
Rss = [Rss (abs(rss))^2];
Tpp = [Tpp (nt(i) .* cos(thetaI) ./ ni(i) .* cos(real(thetaT))).*(abs(tpp )^2)];
Tss = [Tss (nt(i) .* cos(real(thetaT)) ./ ni(i) .* cos(thetaI)).*(abs(tss )^2)];
Tsp = [Tsp (nt(i) .* cos(real(thetaT)) ./ ni(i) .* cos(thetaI)).*(abs(tsp )^2)];
Tps = [Tps (nt(i) .* cos(real(thetaT)) ./ ni(i) .* cos(thetaI)).*(abs(tps )^2)];
T=(Tpp+Tsp+Tps+Tss)/2;
R=(Rpp+Rsp+Rps+Rss)/2;
A=1-R-T;
end
figure(1)
hold on
plot(lambda*10^3,A*100,’LineWidth’, 3)
hold on
xlabel(‘Wavelength (nm)’,’fontsize’,16)
hold on
ylabel(‘Absorbtion’,’fontsize’, 16)
figure(2)
hold on
plot(lambda*10^3,T*100,’LineWidth’, 3)
hold on
xlabel(‘Wavelength (nm)’,’fontsize’,16)
hold on
ylabel(‘Transmission’,’fontsize’, 16) In this code, MATLAB gives me the following issue: For the solving function, how can I correct this error?
Error using sym/vpasolve:
Unable to find variables in equations.
Error in ni_water_simulationburgemanforchatgbt (line 99):
`solutions = vpasolve(eq, epsilon_mg, min(epsi, epsh), max(epsi, epsh));`

clear all
lambda = 500*10^-3:10*10^-3:2500*10^-3; % in microns
A1= 1.4182;
B1= 0.021304;
n_pc=sqrt(1+(A1.*lambda.^2)./(lambda.^2-B1));
wp= 15.92; % eV
f0 = 0.096;
Gamma0 = 0.048; % eV
f1 = 0.100;
Gamma1 = 4.511; % eV
omega1 = 0.174; % eV
f2 = 0.135;
Gamma2 = 1.334; % eV
omega2 = 0.582; % eV
f3 = 0.106;
Gamma3 = 2.178; % eV
omega3 = 1.597; % eV
f4 = 0.729;
Gamma4 = 6.292; % eV
omega4 = 6.089; % eV
OmegaP = sqrt(f0) * wp; % eV
eV = 4.13566733e-1 * 2.99792458 ./ lambda;
epsilon = 1 – OmegaP^2 ./ (eV .* (eV + 1i * Gamma0));
epsilon = epsilon + f1 * wp^2 ./ ((omega1^2 – eV.^2) – 1i * eV * Gamma1);
epsilon = epsilon + f2 * wp^2 ./ ((omega2^2 – eV.^2) – 1i * eV * Gamma2);
epsilon = epsilon + f3 * wp^2 ./ ((omega3^2 – eV.^2) – 1i * eV * Gamma3);
epsilon = epsilon + f4 * wp^2 ./ ((omega4^2 – eV.^2) – 1i * eV * Gamma4);
n = real(sqrt(epsilon));
k = imag(sqrt(epsilon));
nMetal = n+1i.*k;
%NWATER
NWATER = 0.0738.*lambda.^6 – 0.6168.*lambda.^5 + 2.0263.*lambda.^4 – 3.3315.*lambda.^3 + 2.8708.*lambda.^2 – 1.2367.*lambda + 1.5411;
nAir=1+0.05792105./(238.0185-(lambda.^(-2)))+0.00167917./(57.362-(lambda.^(-2)));
% permetivity
epsMetal = nMetal.^2;
epsWATER=NWATER.^2;
%parmenter for each axes
%1 specific volume
ni=n_pc;
nt=NWATER;
%angels
thetaI =0; % incidence angle
thetaI = thetaI/180*pi;
beta=20;
beta = beta/180*pi;
fi=0;
fi=fi/180*pi;
%%%%%
a=20*10.^-9;
b=5*10.^-9;
d=2*a*cos(beta);
fi=0.3;
fh=1-fi;
Rpp = [];
Rsp = [];
Rps = [];
Rss = [];
Tpp = [];
Tsp = [];
Tps = [];
Tss = [];
% epsilon for compost materals SHAPE Factor
e= sqrt(1-(b/a)^2);
la=((1-e^.2)/e^2)*((log((1+e)/(1-e)))/2*e^2 -1);
lb=0.5*(1-la);
% Symbolic variable for epsilon_mg
syms epsilon_mg
%%%%%%%%
for i=1:size(lambda,2)
%snel law §
thetaT=asin(ni(i)*sin(thetaI)/nt(i));
k0=2*pi/(lambda(i)*10^-6);
VX=ni(i)*sin(thetaI);
epsi=epsMetal(i);
epsh=epsWATER(i);

% Bruggeman mixing formula
eq = fi * (epsi – epsilon_mg) / (epsilon_mg + la * (epsi – epsilon_mg)) +(1 – fi) * (epsh – epsilon_mg) / (epsilon_mg + lb * (epsh – epsilon_mg)) == 0;
% Solve equation with positive imaginary part
solutions = vpasolve(eq, epsilon_mg, [min(epsi, epsh), max(epsi, epsh)]);
positive_imaginary = solutions(imag(solutions) > 0);
if ~isempty(positive_imaginary)
epsilon_mg = positive_imaginary(1);
else
error(‘No solution with positive imaginary part found at index %d’, i);

end
eps1=epsilon_mg;
eps2=epsilon_mg;
eps3=epsilon_mg;
exx=eps2 +(eps1.*cos(beta).*cos(beta) +eps3.*sin(beta).*sin(beta) -eps2).*cos(fi).*cos(fi);
exy=0.5.*(eps1.*cos(beta).*cos(beta) +eps3.*sin(beta).*sin(beta) – eps2).*sin(2.*fi);
exz=0.5.*(eps3-eps1).*sin(2.*beta).*cos(fi);
eyy=eps2 +(eps1.*cos(beta).*cos(beta) +eps3.*sin(beta).*sin(beta) – eps2).*sin(fi).*sin(fi);
eyz=0.5.*(eps3-eps1).*sin(2.*beta).*sin(fi);
ezz=eps1 +(eps3 -eps1).*cos(beta).*cos(beta);
eyx=exy;
ezx=exz;
ezy=eyz;
del = [-VX.*ezx./ezz 1-(VX.*VX)./ezz -VX.*ezy./ezz 0; exx-(exz.*ezx)./ezz -VX.*exz./ezz exy-exz.*ezy./ezz 0; 0 0 0 1; eyx-(eyz.*ezx)./ezz -VX.*eyz./ezz eyy-(VX.*VX)-(eyz.*ezy)./ezz 0];
P=exp(1)^(1i.*k0.*d.*del);
a1 = ni(i).*(nt(i).*P(1,2)-cos(thetaT).*P(2,2))+cos(thetaI).*(nt(i).*P(1,1)-cos(thetaT).*P(2,1));
a2 = ni(i).*(nt(i).*P(1,2)-cos(thetaT)*P(2,2))-cos(thetaI).*(nt(i).*P(1,1)-cos(thetaT).*P(2,1));
a3 = (nt(i).*P(1,3)-cos(thetaT).*P(2,3))+ni(i).*cos(thetaI).*(nt(i).*P(1,4)-cos(thetaT).*P(2,4));
a4 = (nt(i).*P(1,3)-cos(thetaT).*P(2,3))-ni(i).*cos(thetaI).*(nt(i).*P(1,4)-cos(thetaT).*P(2,4));
a5 = ni(i).*(nt(i).*cos(thetaT).*P(3,2 )-P(4,2)) +cos(thetaI).*(nt(i).*cos(thetaT).*P(3,1)-P(4,1));
a6 = ni(i).*(nt(i).*cos(thetaT).*P(3,2) -P(4,2))-cos(thetaI).*(nt(i).*cos(thetaT).*P(3,1)-P(4,1));
a7 = (nt(i).*cos(thetaT).*P(3,3)-P(4,3))+ni(i).*cos(thetaI).*(nt(i).*P(3,4).*cos(thetaT)-P(4,4));
a8 = (nt(i).*cos(thetaT).*P(3,3)-P(4,3))-ni(i).*cos(thetaI).*(nt(i).*P(3,4).*cos(thetaT)-P(4,4));
b1 = (ni(i).*P(2,2)+cos(thetaI).*P(2,1))./nt(i);
b2 = (ni(i).*P(2,2)-cos(thetaI).*P(2,1))./nt(i);
b3 = (P(2,3)-ni(i).*cos(thetaI).*P(2,4))./nt(i);
b4 = (P(2,3)+ni(i).*cos(thetaI).*P(2,4))./nt(i);
b5 = ni(i).*P(3,2)+cos(thetaI).*P(3,1);
b6 = ni(i).*P(3,2)-cos(thetaI).*P(3,1);
b7 = P(3,3)-ni(i).*cos(thetaI).*P(3,4);
b8 = P(3,3)+ni(i).*cos(thetaI).*P(3,4);
rpp=(a1.*a8-a4.*a5)./(a4.*a6-a2.*a8);
rps=(a3.*a8-a4.*a7)./(a4.*a6-a2.*a8);
rsp=(a2.*a5-a1.*a6)./(a4.*a6-a2.*a8);
rss=(a2.*a7-a6.*a3)./(a4.*a6-a2.*a8);
tpp=b1+b2.*rpp+b3.*rsp;
tps=b4+b2.*rps+b3.*rss;
tsp=b5+b6.*rpp+b7.*rsp;
tss=b8+b6.*rps+b7.*rss;
Rpp = [Rpp (abs(rpp))^2];
Rsp = [Rsp (abs(rsp))^2];
Rps = [Rps (abs(rps))^2];
Rss = [Rss (abs(rss))^2];
Tpp = [Tpp (nt(i) .* cos(thetaI) ./ ni(i) .* cos(real(thetaT))).*(abs(tpp )^2)];
Tss = [Tss (nt(i) .* cos(real(thetaT)) ./ ni(i) .* cos(thetaI)).*(abs(tss )^2)];
Tsp = [Tsp (nt(i) .* cos(real(thetaT)) ./ ni(i) .* cos(thetaI)).*(abs(tsp )^2)];
Tps = [Tps (nt(i) .* cos(real(thetaT)) ./ ni(i) .* cos(thetaI)).*(abs(tps )^2)];
T=(Tpp+Tsp+Tps+Tss)/2;
R=(Rpp+Rsp+Rps+Rss)/2;
A=1-R-T;
end
figure(1)
hold on
plot(lambda*10^3,A*100,’LineWidth’, 3)
hold on
xlabel(‘Wavelength (nm)’,’fontsize’,16)
hold on
ylabel(‘Absorbtion’,’fontsize’, 16)
figure(2)
hold on
plot(lambda*10^3,T*100,’LineWidth’, 3)
hold on
xlabel(‘Wavelength (nm)’,’fontsize’,16)
hold on
ylabel(‘Transmission’,’fontsize’, 16) solve function, matalb code, sav, vpasolve MATLAB Answers — New Questions

​

Tags: matlab

Share this!

Related posts

I want to build a double pendulum system in Simulink but am getting errors relating to the tolerance and step size
2025-05-16

I want to build a double pendulum system in Simulink but am getting errors relating to the tolerance and step size

How to model a simple brake in Simscape (mechanical rotational domain)?
2025-05-16

How to model a simple brake in Simscape (mechanical rotational domain)?

How to create excel sheet for developed model using MATLAB
2025-05-16

How to create excel sheet for developed model using MATLAB

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Search

Categories

  • Matlab
  • Microsoft
  • News
  • Other
Application Package Repository Telkom University

Tags

matlab microsoft opensources
Application Package Download License

Application Package Download License

Adobe
Google for Education
IBM
Matlab
Microsoft
Wordpress
Visual Paradigm
Opensource

Sign Up For Newsletters

Be the First to Know. Sign up for newsletter today

Application Package Repository Telkom University

Portal Application Package Repository Telkom University, for internal use only, empower civitas academica in study and research.

Information

  • Telkom University
  • About Us
  • Contact
  • Forum Discussion
  • FAQ
  • Helpdesk Ticket

Contact Us

  • Ask: Any question please read FAQ
  • Mail: helpdesk@telkomuniversity.ac.id
  • Call: +62 823-1994-9941
  • WA: +62 823-1994-9943
  • Site: Gedung Panambulai. Jl. Telekomunikasi

Copyright © Telkom University. All Rights Reserved. ch

  • FAQ
  • Privacy Policy
  • Term

This Application Package for internal Telkom University only (students and employee). Chiers... Dismiss