Email: helpdesk@telkomuniversity.ac.id

This Portal for internal use only!

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • IBM
  • Visual Paradigm
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Office
      • Windows
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Categories
  • Microsoft
    • Microsoft Apps
    • Office
    • Operating System
    • VLS
    • Developer Tools
    • Productivity Tools
    • Database
    • AI + Machine Learning
    • Middleware System
    • Learning Services
    • Analytics
    • Networking
    • Compute
    • Security
    • Internet Of Things
  • Adobe
  • Matlab
  • Google
  • Visual Paradigm
  • WordPress
    • Plugin WP
    • Themes WP
  • Opensource
  • Others
More Categories Less Categories
  • Get Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • My Account
    • Download
    • Cart
    • Checkout
    • Login
  • About Us
    • Contact
    • Forum
    • Frequently Questions
    • Privacy Policy
  • Forum
    • News
      • Category
      • News Tag

iconTicket Service Desk

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • IBM
  • Visual Paradigm
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Office
      • Windows
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Menu
  • Home
    • Download Application Package Repository Telkom University
    • Application Package Repository Telkom University
    • Download Official License Telkom University
    • Download Installer Application Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • All Pack
    • Microsoft
      • Operating System
      • Productivity Tools
      • Developer Tools
      • Database
      • AI + Machine Learning
      • Middleware System
      • Networking
      • Compute
      • Security
      • Analytics
      • Internet Of Things
      • Learning Services
    • Microsoft Apps
      • VLS
    • Adobe
    • Matlab
    • WordPress
      • Themes WP
      • Plugin WP
    • Google
    • Opensource
    • Others
  • My account
    • Download
    • Get Pack
    • Cart
    • Checkout
  • News
    • Category
    • News Tag
  • Forum
  • About Us
    • Privacy Policy
    • Frequently Questions
    • Contact
Home/Matlab/I have a code for optimal control of a deterministic SEIR model. I am unable to code the stochastic version of the model.

I have a code for optimal control of a deterministic SEIR model. I am unable to code the stochastic version of the model.

/ 2025-01-09
I have a code for optimal control of a deterministic SEIR model. I am unable to code the stochastic version of the model.
Matlab

test = -1; % Test variable; as long as variable is negative …the while loops keeps repeating
t0 = 0; % Initial time
tf = 100; % Final time
Delta = 0.00001; % Accepted tollerance
M = 999; % Number of nodes
t = linspace(t0, tf, M+1); % Time variable where linspace creates M+1 …equally spaced nodes between t0 and tf, including t0 and tf.
h = tf/M; % Spacing between nodes
h2 = h/2; % Spacing equal to 2 for Runge-Kutta method
% MODEL PARAMETERS
alpha = 1.5;
mu = 0.05;
b1 = 0.05;
b2 = 0.03;
lambda = 1.2;
epsilon2 = 0.55;
epsilon1 = 0.01;
gamma = 0.2;
% WEIGHT FACTORS
k1 = 0.05; % Weight on threatened population
k2 = 0.05; % Weigth on deceased population
l1 = 0.05;
l2 = 0.05;
m1 = 0.025;
m2 = 0.025;
m3 = 0.025;
m4 = 0.025;
% INITIAL CONDITIONS MODEL
S = zeros(1, M+1); % Susceptible
E = zeros(1, M+1); % Exposed
I = zeros(1, M+1); % Infected
R = zeros(1, M+1); % Recovered
S(1) = 99999;
E(1) = 100;
I(1) = 100;
R(1) = 50;
% INITIAL GUESS FOR OPTIMAL CONTROL INPUT
u1 = zeros(1, M+1); % Control input for government intervention
u2 = zeros(1, M+1); % Control input for testing
% INITIAL CONDITIONS ADOINT SYSTEM
lambda1 = zeros(1, M+1);
lambda2 = zeros(1, M+1);
lambda3 = zeros(1, M+1);
lambda4 = zeros(1, M+1);
lambda1(M+1) = 0;
lambda2(M+1) = 0;
lambda3(M+1) = 0;
lambda4(M+1) = 0;
% FORWARD-BACKWARD SWEEP METHOD
loopcnt = 0; % Count number of loops
while(test < 0)
loopcnt = loopcnt + 1;
oldu1 = u1;
oldu2 = u2;
oldS = S;
oldE = E;
oldI = I;
oldR = R;
oldlambda1 = lambda1;
oldlambda2 = lambda2;
oldlambda3 = lambda3;
oldlambda4 = lambda4;

% SYSTEM DYNAMICCS
for i = 1:M

if i > round(tau1 / h)
E_tau1 = E(i-round(tau1/h));
else
E_tau1 = E(1);
end

if i > round(tau2 / h)
I_tau2 = I(i-round(tau2/h));
else
I_tau2 = I(1);
end
m11 = alpha – b1 * (1-u1(i)) * S(i) * E(i) / (S(i)+E(i)+I(i)+R(i)) – b2 * (1-u1(i)) * S(i) * I(i) / (S(i)+E(i)+I(i)+R(i))- mu * S(i);
m12 = b1 * (1-u1(i)) * S(i) * E(i) / (S(i)+E(i)+I(i)+R(i)) + b2 * (1-u1(i)) * S(i) * E(i) / (S(i)+E(i)+I(i)+R(i)) – lambda * E_tau1 – (epsilon1 + mu) * E(i);
m13 = lambda * E_tau1 – epsilon2 * (1+u2(i)) * I_tau2 – (gamma + mu) * I(i);
m14 = epsilon1 * (1+u2(i)) * E(i) + epsilon2 * I_tau2 – mu * R(i);

m21 = alpha – b1 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m11) * (E(i)+h2*m12) / ((S(i)+h2*m11)+(E(i)+h2*m12)+(I(i)+h2*m13)+(R(i)+h2*m14)) – b2 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m11) * (I(i)+h2*m13) / ((S(i)+h2*m11)+(E(i)+h2*m12)+(I(i)+h2*m13)+(R(i)+h2*m14)) – mu * (S(i)+h2*m11);
m22 = b1 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m11) * (E(i)+h2*m12) / ((S(i)+h2*m11)+(E(i)+h2*m12)+(I(i)+h2*m13)+(R(i)+h2*m14)) + b2 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m11) * (I(i)+h2*m13) / ((S(i)+h2*m11)+(E(i)+h2*m12)+(I(i)+h2*m13)+(R(i)+h2*m14)) – lambda * E_tau1 – (epsilon1 + mu) * (E(i)+h2*m12);
m23 = lambda * E_tau1 – epsilon2 * ( 1 + 0.5*(u2(i)+u2(i+1))) * I_tau2 – (gamma + mu) * (I(i)+h2*m13);
m24 = epsilon1 * ( 1 + 0.5*(u2(i)+u2(i+1))) * (E(i)+h2*m12) + epsilon2 * I_tau2 – mu * (R(i)+h2*m14);
m31 = alpha – b1 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m21) * (E(i)+h2*m22) / ((S(i)+h2*m21)+(E(i)+h2*m22)+(I(i)+h2*m23)+(R(i)+h2*m24)) – b2 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m21) * (I(i)+h2*m23) / ((S(i)+h2*m21)+(E(i)+h2*m22)+(I(i)+h2*m23)+(R(i)+h2*m24)) – mu * (S(i)+h2*m21);
m32 = b1 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m21) * (E(i)+h2*m22) / ((S(i)+h2*m21)+(E(i)+h2*m22)+(I(i)+h2*m23)+(R(i)+h2*m24)) + b2 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m21) * (I(i)+h2*m23) / ((S(i)+h2*m21)+(E(i)+h2*m22)+(I(i)+h2*m23)+(R(i)+h2*m24)) – lambda * E_tau1 – (epsilon1 + mu) * (E(i)+h2*m22);
m33 = lambda * E_tau1 – epsilon2 * ( 1 + 0.5*(u2(i)+u2(i+1))) * I_tau2 – (gamma + mu) * (I(i)+h2*m23);
m34 = epsilon1 * ( 1 + 0.5*(u2(i)+u2(i+1))) * (E(i)+h2*m22) + epsilon2 * I_tau2 – mu * (R(i)+h2*m24);
m41 = alpha – b1 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m31) * (E(i)+h2*m32) / ((S(i)+h2*m31)+(E(i)+h2*m32)+(I(i)+h2*m33)+(R(i)+h2*m34)) – b2 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m31) * (I(i)+h2*m33) / ((S(i)+h2*m31)+(E(i)+h2*m32)+(I(i)+h2*m33)+(R(i)+h2*m34)) – mu * (S(i)+h2*m31);
m42 = b1 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m31) * (E(i)+h2*m32) / ((S(i)+h2*m31)+(E(i)+h2*m32)+(I(i)+h2*m33)+(R(i)+h2*m34)) + b2 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m31) * (I(i)+h2*m33) / ((S(i)+h2*m31)+(E(i)+h2*m32)+(I(i)+h2*m33)+(R(i)+h2*m34)) – lambda * E_tau1 – (epsilon1 + mu) * (E(i)+h2*m32);
m43 = lambda * E_tau1 – epsilon2 * ( 1 + 0.5*(u2(i)+u2(i+1))) * I_tau2 – (gamma + mu) * (I(i)+h2*m33);
m44 = epsilon1 * ( 1 + 0.5*(u2(i)+u2(i+1))) * (E(i)+h2*m32) + epsilon2 * I_tau2 – mu * (R(i)+h2*m34);

S(i+1) = S(i) + (h/6)*(m11 + 2*m21 + 2*m31 + m41);
E(i+1) = E(i) + (h/6)*(m12 + 2*m22 + 2*m32 + m42);
I(i+1) = I(i) + (h/6)*(m13 + 2*m23 + 2*m33 + m43);
R(i+1) = R(i) + (h/6)*(m14 + 2*m24 + 2*m34 + m44);
end

% ADJOINT SYSTEM
for i = 1:M % From initial to final value
j = M + 2 – i; % From final value to initial value
n11 = -m1 * S(j) + lambda1(j) * b1 * (1-u1(j)) * E(j) / (S(j)+E(j)+I(j)+R(j)) + lambda1(j) * b2 * (1-u1(j)) * I(j) / (S(j)+E(j)+I(j)+R(j)) + mu * lambda1(j) – b1 * lambda2(j) * (1-u1(j)) * E(j) / (S(j)+E(j)+I(j)+R(j)) – b2 * lambda2(j) * (1-u1(j)) * I(j) / (S(j)+E(j)+I(j)+R(j));
n12 = -k1 – m2 * E(j) + b1 * lambda1(j) * (1-u1(j)) * S(j) / (S(j)+E(j)+I(j)+R(j)) – b1 * lambda2(j) * (1-u1(j)) * S(j) / (S(j)+E(j)+I(j)+R(j)) + lambda * lambda2(j) + epsilon1 * lambda2(j) + mu * lambda2(j) – lambda * lambda3(j) – epsilon1 * lambda4(j) * (1+u2(j));
n13 = -k2 – m3 * I(j) + b2 * lambda1(j) * (1-u1(j)) * S(j) / (S(j)+E(j)+I(j)+R(j)) – b2 * lambda2(j) * (1-u1(j)) * S(j) / (S(j)+E(j)+I(j)+R(j)) + epsilon2 * lambda3(j) * (1+u2(j)) + ( gamma + mu) – epsilon2 * lambda4(j);
n14 = -m4 * R(j) + mu * lambda4(j);

n21 = -m1 * 0.5*(S(j) + S(j-1)) + (lambda1(j)-h2*n11) * b1 * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5*(E(j) + E(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + (lambda1(j)-h2*n11) * b2 * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5*(I(j) + I(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + mu * (lambda1(j)-h2*n11) – b1 * (lambda2(j)-h2*n12) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 *(E(j) + E(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+ 0.5*(I(j)+I(j-1))+0.5*(R(j)+R(j-1))) – b2 * (lambda2(j)-h2*n12) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 *(I(j) + I(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+ 0.5*(I(j)+I(j-1))+0.5*(R(j)+R(j-1)));
n22 = -k1 – m2 * 0.5*(E(j) + E(j-1)) + b1 * (lambda1(j)-h2*n11) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) – b1 * (lambda2(j)-h2*n12) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + lambda * (lambda2(j)-h2*n12) + epsilon1 * (lambda2(j)-h2*n12) + mu * (lambda2(j)-h2*n12) – lambda * (lambda3(j)-h2*n13) – epsilon1 * (lambda4(j)-h2*n14) * (1+(0.5*(u2(j) + u2(j-1))));
n23 = -k2 – m3 * 0.5*(I(j) + I(j-1)) + b2 * (lambda1(j)-h2*n11) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) – b2 * (lambda2(j)-h2*n12) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + epsilon2 * (lambda3(j)-h2*n13) * (1+0.5*(u2(j)+u2(j-1))) + ( gamma + mu) – epsilon2 * (lambda4(j)-h2*n14);
n24 = -m4 * 0.5*(R(j) + R(j-1)) + mu * (lambda4(j)-h2*n14);
n31 = -m1 * 0.5*(S(j) + S(j-1)) + (lambda1(j)-h2*n21) * b1 * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5*(E(j) + E(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + (lambda1(j)-h2*n21) * b2 * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5*(I(j) + I(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + mu * (lambda1(j)-h2*n21) – b1 * (lambda2(j)-h2*n22) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 *(E(j) + E(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+ 0.5*(I(j)+I(j-1))+0.5*(R(j)+R(j-1))) – b2 * (lambda2(j)-h2*n22) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 *(I(j) + I(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+ 0.5*(I(j)+I(j-1))+0.5*(R(j)+R(j-1)));
n32 = -k1 – m2 * 0.5*(E(j) + E(j-1)) + b1 * (lambda1(j)-h2*n21) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) – b1 * (lambda2(j)-h2*n22) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + lambda * (lambda2(j)-h2*n22) + epsilon1 * (lambda2(j)-h2*n22) + mu * (lambda2(j)-h2*n22) – lambda * (lambda3(j)-h2*n23) – epsilon1 * (lambda4(j)-h2*n24) * (1+(0.5*(u2(j) + u2(j-1))));
n33 = -k2 – m3 * 0.5*(I(j) + I(j-1)) + b2 * (lambda1(j)-h2*n21) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) – b2 * (lambda2(j)-h2*n22) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + epsilon2 * (lambda3(j)-h2*n23) * (1+0.5*(u2(j)+u2(j-1))) + ( gamma + mu) – epsilon2 * (lambda4(j)-h2*n24);
n34 = -m4 * 0.5*(R(j) + R(j-1)) + mu * (lambda4(j)-h2*n24);
n41 = -m1 * 0.5*(S(j) + S(j-1)) + (lambda1(j)-h2*n31) * b1 * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5*(E(j) + E(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + (lambda1(j)-h2*n31) * b2 * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5*(I(j) + I(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + mu * (lambda1(j)-h2*n31) – b1 * (lambda2(j)-h2*n32) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 *(E(j) + E(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+ 0.5*(I(j)+I(j-1))+0.5*(R(j)+R(j-1))) – b2 * (lambda2(j)-h2*n32) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 *(I(j) + I(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+ 0.5*(I(j)+I(j-1))+0.5*(R(j)+R(j-1)));
n42 = -k1 – m2 * 0.5*(E(j) + E(j-1)) + b1 * (lambda1(j)-h2*n31) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) – b1 * (lambda2(j)-h2*n32) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + lambda * (lambda2(j)-h2*n32) + epsilon1 * (lambda2(j)-h2*n32) + mu * (lambda2(j)-h2*n32) – lambda * (lambda3(j)-h2*n33) – epsilon1 * (lambda4(j)-h2*n34) * (1+(0.5*(u2(j) + u2(j-1))));
n43 = -k2 – m3 * 0.5*(I(j) + I(j-1)) + b2 * (lambda1(j)-h2*n31) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) – b2 * (lambda2(j)-h2*n32) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + epsilon2 * (lambda3(j)-h2*n33) * (1+0.5*(u2(j)+u2(j-1))) + ( gamma + mu) – epsilon2 * (lambda4(j)-h2*n34);
n44 = -m4 * 0.5*(R(j) + R(j-1)) + mu * (lambda4(j)-h2*n34);

lambda1(j-1) = lambda1(j) – (h/6)*(n11 + 2*n21 + 2*n31 + n41);
lambda2(j-1) = lambda2(j) – (h/6)*(n12 + 2*n22 + 2*n32 + n42);
lambda3(j-1) = lambda3(j) – (h/6)*(n13 + 2*n23 + 2*n33 + n43);
lambda4(j-1) = lambda4(j) – (h/6)*(n14 + 2*n24 + 2*n34 + n44);
end

% OPTIMALITY CONDITIONS
U1 = max(0, min(1.0, ((lambda2 – lambda1).*b1.*S.*E + (lambda2 – lambda1).*b2.*S.*I ) ./ (l1 .* (S+E+I+R))));
u1 = 0.01.*U1 + 0.99.*oldu1;
U2 = max(0, min(1.0, ((lambda3 .* epsilon2 .* I – lambda4 .* epsilon1 .* E) ./(l2))));
u2 = 0.01.*U2 + 0.99.*oldu2;

% U1 = max(0, min(1, (L2 – L1).*b1.*x1.*x2./(b1)));
% u1 = 0.01.*U1 + 0.99.*oldu1;
% U2 = min(1.0, max(0, (((L2 – L3).*nu.*x2)./(b2))));
% u2 = 0.01.*U2 + 0.99.*oldu2;
% U3 = min(1.0, max(0, (((L1 – L7).*psi.*x1)./(b3))));
% u3 = 0.01.*U3 + 0.99.*oldu3;

% COST FUNCTION
J = k1*sum(E)*h + k2*sum(I)*h + l1*sum(u1.^2)*h + l2*sum(u2.^2)*h + m1./2*sum(S.^2)*h + m2./2*sum(E.^2)*h+ m3./2*sum(I.^2)*h+ m4/2*sum(R.^2)*h;
Cost1 = k1.*cumsum(E)*h; % Total cost of threatened population
Cost2 = k2.*cumsum(I)*h;
Cost3 = l1.*cumsum(u1.^2)*h;
Cost4 = l2.*cumsum(u2.^2)*h;
Cost5 = m1./2.*cumsum(S.^2)*h;
Cost6 = m2./2.*cumsum(E.^2)*h; % Total cost of control input u1
Cost7 = m3./2.*cumsum(I.^2)*h; % Total cost of control input u2
Cost8 = m4./2.*cumsum(R.^2)*h; % Total cost of control input u3
J2 = Cost1 + Cost2 + Cost3 + Cost4 + Cost5 + Cost6 + Cost7+ Cost8; % Cost at each time for …plotting graphs
% % COST FUNCTION
% J = c1./2*sum(x4.^2)*h + b1./2*sum(u1.^2)*h + b2./2*sum(u2.^2)*h + b3./2*sum(u3.^2)*h + c2*max(x6);
% Cost1 = c1./2.*cumsum(x4.^2)*h; % Total cost of threatened population
% Cost2 = b1./2.*cumsum(u1.^2)*h; % Total cost of control input u1
% Cost3 = b2./2.*cumsum(u2.^2)*h; % Total cost of control input u2
% Cost4 = b2./2.*cumsum(u3.^2)*h; % Total cost of control input u3
% Cost5 = c2.*x6; % Total cost of deceased population
% J2 = Cost1 + Cost2 + Cost3 + Cost4 + Cost5; % Cost at each time for …plotting graphs
%
% CHECK CONVERGENCE TO STOP SWEEP METHOD
temp1 = Delta*sum(abs(u1)) – sum(abs(oldu1 – u1));
temp2 = Delta*sum(abs(u2)) – sum(abs(oldu2 – u2));
temp3 = Delta*sum(abs(S)) – sum(abs(oldS – S));
temp4 = Delta*sum(abs(E)) – sum(abs(oldE – E));
temp5 = Delta*sum(abs(I)) – sum(abs(oldI – I));
temp6 = Delta*sum(abs(R)) – sum(abs(oldR – R));
temp7 = Delta*sum(abs(lambda1)) – sum(abs(oldlambda1 – lambda1));
temp8 = Delta*sum(abs(lambda2)) – sum(abs(oldlambda2 – lambda2));
temp9 = Delta*sum(abs(lambda3)) – sum(abs(oldlambda3 – lambda3));
temp10 = Delta*sum(abs(lambda4)) – sum(abs(oldlambda4 – lambda4));
test = min([temp1 temp2 temp3 temp4 temp5 temp6 temp7 temp8 temp9 temp10]);
end
disp([‘number of loops: ‘ num2str(loopcnt)]);
disp([‘Cost function: ‘ num2str(J)]);
disp([‘Portion deceased: ‘ num2str(max(x6))]);
y(1,:) = t;
y(2,:) = S;
y(3,:) = E;
y(4,:) = I;
y(5,:) = R;
y(9,:) = lambda1;
y(10,:) = lambda2;
y(11,:) = lambda3;
y(12,:) = lambda4;
y(16,:) = u1;
y(17,:) = u2;
y(19,:) = J;
% IMMUNITY REACHED
% imm = x5 + x7.*100; % Percentage immune
% R_per = R*100; % percentage threatened
% x6_per = x6*100; % percentage deceased
plot(y(1,:), y(2,:)), grid on, xlabel(‘t’), ylabel(‘S’) % plotting S
plot(y(1,:), y(3,:)), grid on, xlabel(‘t’), ylabel(‘E’) % plotting E
plot(y(1,:), y(4,:)), grid on, xlabel(‘t’), ylabel(‘I’) % plotting I
plot(y(1,:), y(5,:)), grid on, xlabel(‘t’), ylabel(‘R’) % plotting R
I want the deterministic version of the codetest = -1; % Test variable; as long as variable is negative …the while loops keeps repeating
t0 = 0; % Initial time
tf = 100; % Final time
Delta = 0.00001; % Accepted tollerance
M = 999; % Number of nodes
t = linspace(t0, tf, M+1); % Time variable where linspace creates M+1 …equally spaced nodes between t0 and tf, including t0 and tf.
h = tf/M; % Spacing between nodes
h2 = h/2; % Spacing equal to 2 for Runge-Kutta method
% MODEL PARAMETERS
alpha = 1.5;
mu = 0.05;
b1 = 0.05;
b2 = 0.03;
lambda = 1.2;
epsilon2 = 0.55;
epsilon1 = 0.01;
gamma = 0.2;
% WEIGHT FACTORS
k1 = 0.05; % Weight on threatened population
k2 = 0.05; % Weigth on deceased population
l1 = 0.05;
l2 = 0.05;
m1 = 0.025;
m2 = 0.025;
m3 = 0.025;
m4 = 0.025;
% INITIAL CONDITIONS MODEL
S = zeros(1, M+1); % Susceptible
E = zeros(1, M+1); % Exposed
I = zeros(1, M+1); % Infected
R = zeros(1, M+1); % Recovered
S(1) = 99999;
E(1) = 100;
I(1) = 100;
R(1) = 50;
% INITIAL GUESS FOR OPTIMAL CONTROL INPUT
u1 = zeros(1, M+1); % Control input for government intervention
u2 = zeros(1, M+1); % Control input for testing
% INITIAL CONDITIONS ADOINT SYSTEM
lambda1 = zeros(1, M+1);
lambda2 = zeros(1, M+1);
lambda3 = zeros(1, M+1);
lambda4 = zeros(1, M+1);
lambda1(M+1) = 0;
lambda2(M+1) = 0;
lambda3(M+1) = 0;
lambda4(M+1) = 0;
% FORWARD-BACKWARD SWEEP METHOD
loopcnt = 0; % Count number of loops
while(test < 0)
loopcnt = loopcnt + 1;
oldu1 = u1;
oldu2 = u2;
oldS = S;
oldE = E;
oldI = I;
oldR = R;
oldlambda1 = lambda1;
oldlambda2 = lambda2;
oldlambda3 = lambda3;
oldlambda4 = lambda4;

% SYSTEM DYNAMICCS
for i = 1:M

if i > round(tau1 / h)
E_tau1 = E(i-round(tau1/h));
else
E_tau1 = E(1);
end

if i > round(tau2 / h)
I_tau2 = I(i-round(tau2/h));
else
I_tau2 = I(1);
end
m11 = alpha – b1 * (1-u1(i)) * S(i) * E(i) / (S(i)+E(i)+I(i)+R(i)) – b2 * (1-u1(i)) * S(i) * I(i) / (S(i)+E(i)+I(i)+R(i))- mu * S(i);
m12 = b1 * (1-u1(i)) * S(i) * E(i) / (S(i)+E(i)+I(i)+R(i)) + b2 * (1-u1(i)) * S(i) * E(i) / (S(i)+E(i)+I(i)+R(i)) – lambda * E_tau1 – (epsilon1 + mu) * E(i);
m13 = lambda * E_tau1 – epsilon2 * (1+u2(i)) * I_tau2 – (gamma + mu) * I(i);
m14 = epsilon1 * (1+u2(i)) * E(i) + epsilon2 * I_tau2 – mu * R(i);

m21 = alpha – b1 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m11) * (E(i)+h2*m12) / ((S(i)+h2*m11)+(E(i)+h2*m12)+(I(i)+h2*m13)+(R(i)+h2*m14)) – b2 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m11) * (I(i)+h2*m13) / ((S(i)+h2*m11)+(E(i)+h2*m12)+(I(i)+h2*m13)+(R(i)+h2*m14)) – mu * (S(i)+h2*m11);
m22 = b1 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m11) * (E(i)+h2*m12) / ((S(i)+h2*m11)+(E(i)+h2*m12)+(I(i)+h2*m13)+(R(i)+h2*m14)) + b2 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m11) * (I(i)+h2*m13) / ((S(i)+h2*m11)+(E(i)+h2*m12)+(I(i)+h2*m13)+(R(i)+h2*m14)) – lambda * E_tau1 – (epsilon1 + mu) * (E(i)+h2*m12);
m23 = lambda * E_tau1 – epsilon2 * ( 1 + 0.5*(u2(i)+u2(i+1))) * I_tau2 – (gamma + mu) * (I(i)+h2*m13);
m24 = epsilon1 * ( 1 + 0.5*(u2(i)+u2(i+1))) * (E(i)+h2*m12) + epsilon2 * I_tau2 – mu * (R(i)+h2*m14);
m31 = alpha – b1 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m21) * (E(i)+h2*m22) / ((S(i)+h2*m21)+(E(i)+h2*m22)+(I(i)+h2*m23)+(R(i)+h2*m24)) – b2 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m21) * (I(i)+h2*m23) / ((S(i)+h2*m21)+(E(i)+h2*m22)+(I(i)+h2*m23)+(R(i)+h2*m24)) – mu * (S(i)+h2*m21);
m32 = b1 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m21) * (E(i)+h2*m22) / ((S(i)+h2*m21)+(E(i)+h2*m22)+(I(i)+h2*m23)+(R(i)+h2*m24)) + b2 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m21) * (I(i)+h2*m23) / ((S(i)+h2*m21)+(E(i)+h2*m22)+(I(i)+h2*m23)+(R(i)+h2*m24)) – lambda * E_tau1 – (epsilon1 + mu) * (E(i)+h2*m22);
m33 = lambda * E_tau1 – epsilon2 * ( 1 + 0.5*(u2(i)+u2(i+1))) * I_tau2 – (gamma + mu) * (I(i)+h2*m23);
m34 = epsilon1 * ( 1 + 0.5*(u2(i)+u2(i+1))) * (E(i)+h2*m22) + epsilon2 * I_tau2 – mu * (R(i)+h2*m24);
m41 = alpha – b1 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m31) * (E(i)+h2*m32) / ((S(i)+h2*m31)+(E(i)+h2*m32)+(I(i)+h2*m33)+(R(i)+h2*m34)) – b2 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m31) * (I(i)+h2*m33) / ((S(i)+h2*m31)+(E(i)+h2*m32)+(I(i)+h2*m33)+(R(i)+h2*m34)) – mu * (S(i)+h2*m31);
m42 = b1 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m31) * (E(i)+h2*m32) / ((S(i)+h2*m31)+(E(i)+h2*m32)+(I(i)+h2*m33)+(R(i)+h2*m34)) + b2 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m31) * (I(i)+h2*m33) / ((S(i)+h2*m31)+(E(i)+h2*m32)+(I(i)+h2*m33)+(R(i)+h2*m34)) – lambda * E_tau1 – (epsilon1 + mu) * (E(i)+h2*m32);
m43 = lambda * E_tau1 – epsilon2 * ( 1 + 0.5*(u2(i)+u2(i+1))) * I_tau2 – (gamma + mu) * (I(i)+h2*m33);
m44 = epsilon1 * ( 1 + 0.5*(u2(i)+u2(i+1))) * (E(i)+h2*m32) + epsilon2 * I_tau2 – mu * (R(i)+h2*m34);

S(i+1) = S(i) + (h/6)*(m11 + 2*m21 + 2*m31 + m41);
E(i+1) = E(i) + (h/6)*(m12 + 2*m22 + 2*m32 + m42);
I(i+1) = I(i) + (h/6)*(m13 + 2*m23 + 2*m33 + m43);
R(i+1) = R(i) + (h/6)*(m14 + 2*m24 + 2*m34 + m44);
end

% ADJOINT SYSTEM
for i = 1:M % From initial to final value
j = M + 2 – i; % From final value to initial value
n11 = -m1 * S(j) + lambda1(j) * b1 * (1-u1(j)) * E(j) / (S(j)+E(j)+I(j)+R(j)) + lambda1(j) * b2 * (1-u1(j)) * I(j) / (S(j)+E(j)+I(j)+R(j)) + mu * lambda1(j) – b1 * lambda2(j) * (1-u1(j)) * E(j) / (S(j)+E(j)+I(j)+R(j)) – b2 * lambda2(j) * (1-u1(j)) * I(j) / (S(j)+E(j)+I(j)+R(j));
n12 = -k1 – m2 * E(j) + b1 * lambda1(j) * (1-u1(j)) * S(j) / (S(j)+E(j)+I(j)+R(j)) – b1 * lambda2(j) * (1-u1(j)) * S(j) / (S(j)+E(j)+I(j)+R(j)) + lambda * lambda2(j) + epsilon1 * lambda2(j) + mu * lambda2(j) – lambda * lambda3(j) – epsilon1 * lambda4(j) * (1+u2(j));
n13 = -k2 – m3 * I(j) + b2 * lambda1(j) * (1-u1(j)) * S(j) / (S(j)+E(j)+I(j)+R(j)) – b2 * lambda2(j) * (1-u1(j)) * S(j) / (S(j)+E(j)+I(j)+R(j)) + epsilon2 * lambda3(j) * (1+u2(j)) + ( gamma + mu) – epsilon2 * lambda4(j);
n14 = -m4 * R(j) + mu * lambda4(j);

n21 = -m1 * 0.5*(S(j) + S(j-1)) + (lambda1(j)-h2*n11) * b1 * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5*(E(j) + E(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + (lambda1(j)-h2*n11) * b2 * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5*(I(j) + I(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + mu * (lambda1(j)-h2*n11) – b1 * (lambda2(j)-h2*n12) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 *(E(j) + E(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+ 0.5*(I(j)+I(j-1))+0.5*(R(j)+R(j-1))) – b2 * (lambda2(j)-h2*n12) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 *(I(j) + I(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+ 0.5*(I(j)+I(j-1))+0.5*(R(j)+R(j-1)));
n22 = -k1 – m2 * 0.5*(E(j) + E(j-1)) + b1 * (lambda1(j)-h2*n11) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) – b1 * (lambda2(j)-h2*n12) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + lambda * (lambda2(j)-h2*n12) + epsilon1 * (lambda2(j)-h2*n12) + mu * (lambda2(j)-h2*n12) – lambda * (lambda3(j)-h2*n13) – epsilon1 * (lambda4(j)-h2*n14) * (1+(0.5*(u2(j) + u2(j-1))));
n23 = -k2 – m3 * 0.5*(I(j) + I(j-1)) + b2 * (lambda1(j)-h2*n11) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) – b2 * (lambda2(j)-h2*n12) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + epsilon2 * (lambda3(j)-h2*n13) * (1+0.5*(u2(j)+u2(j-1))) + ( gamma + mu) – epsilon2 * (lambda4(j)-h2*n14);
n24 = -m4 * 0.5*(R(j) + R(j-1)) + mu * (lambda4(j)-h2*n14);
n31 = -m1 * 0.5*(S(j) + S(j-1)) + (lambda1(j)-h2*n21) * b1 * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5*(E(j) + E(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + (lambda1(j)-h2*n21) * b2 * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5*(I(j) + I(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + mu * (lambda1(j)-h2*n21) – b1 * (lambda2(j)-h2*n22) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 *(E(j) + E(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+ 0.5*(I(j)+I(j-1))+0.5*(R(j)+R(j-1))) – b2 * (lambda2(j)-h2*n22) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 *(I(j) + I(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+ 0.5*(I(j)+I(j-1))+0.5*(R(j)+R(j-1)));
n32 = -k1 – m2 * 0.5*(E(j) + E(j-1)) + b1 * (lambda1(j)-h2*n21) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) – b1 * (lambda2(j)-h2*n22) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + lambda * (lambda2(j)-h2*n22) + epsilon1 * (lambda2(j)-h2*n22) + mu * (lambda2(j)-h2*n22) – lambda * (lambda3(j)-h2*n23) – epsilon1 * (lambda4(j)-h2*n24) * (1+(0.5*(u2(j) + u2(j-1))));
n33 = -k2 – m3 * 0.5*(I(j) + I(j-1)) + b2 * (lambda1(j)-h2*n21) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) – b2 * (lambda2(j)-h2*n22) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + epsilon2 * (lambda3(j)-h2*n23) * (1+0.5*(u2(j)+u2(j-1))) + ( gamma + mu) – epsilon2 * (lambda4(j)-h2*n24);
n34 = -m4 * 0.5*(R(j) + R(j-1)) + mu * (lambda4(j)-h2*n24);
n41 = -m1 * 0.5*(S(j) + S(j-1)) + (lambda1(j)-h2*n31) * b1 * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5*(E(j) + E(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + (lambda1(j)-h2*n31) * b2 * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5*(I(j) + I(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + mu * (lambda1(j)-h2*n31) – b1 * (lambda2(j)-h2*n32) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 *(E(j) + E(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+ 0.5*(I(j)+I(j-1))+0.5*(R(j)+R(j-1))) – b2 * (lambda2(j)-h2*n32) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 *(I(j) + I(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+ 0.5*(I(j)+I(j-1))+0.5*(R(j)+R(j-1)));
n42 = -k1 – m2 * 0.5*(E(j) + E(j-1)) + b1 * (lambda1(j)-h2*n31) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) – b1 * (lambda2(j)-h2*n32) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + lambda * (lambda2(j)-h2*n32) + epsilon1 * (lambda2(j)-h2*n32) + mu * (lambda2(j)-h2*n32) – lambda * (lambda3(j)-h2*n33) – epsilon1 * (lambda4(j)-h2*n34) * (1+(0.5*(u2(j) + u2(j-1))));
n43 = -k2 – m3 * 0.5*(I(j) + I(j-1)) + b2 * (lambda1(j)-h2*n31) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) – b2 * (lambda2(j)-h2*n32) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + epsilon2 * (lambda3(j)-h2*n33) * (1+0.5*(u2(j)+u2(j-1))) + ( gamma + mu) – epsilon2 * (lambda4(j)-h2*n34);
n44 = -m4 * 0.5*(R(j) + R(j-1)) + mu * (lambda4(j)-h2*n34);

lambda1(j-1) = lambda1(j) – (h/6)*(n11 + 2*n21 + 2*n31 + n41);
lambda2(j-1) = lambda2(j) – (h/6)*(n12 + 2*n22 + 2*n32 + n42);
lambda3(j-1) = lambda3(j) – (h/6)*(n13 + 2*n23 + 2*n33 + n43);
lambda4(j-1) = lambda4(j) – (h/6)*(n14 + 2*n24 + 2*n34 + n44);
end

% OPTIMALITY CONDITIONS
U1 = max(0, min(1.0, ((lambda2 – lambda1).*b1.*S.*E + (lambda2 – lambda1).*b2.*S.*I ) ./ (l1 .* (S+E+I+R))));
u1 = 0.01.*U1 + 0.99.*oldu1;
U2 = max(0, min(1.0, ((lambda3 .* epsilon2 .* I – lambda4 .* epsilon1 .* E) ./(l2))));
u2 = 0.01.*U2 + 0.99.*oldu2;

% U1 = max(0, min(1, (L2 – L1).*b1.*x1.*x2./(b1)));
% u1 = 0.01.*U1 + 0.99.*oldu1;
% U2 = min(1.0, max(0, (((L2 – L3).*nu.*x2)./(b2))));
% u2 = 0.01.*U2 + 0.99.*oldu2;
% U3 = min(1.0, max(0, (((L1 – L7).*psi.*x1)./(b3))));
% u3 = 0.01.*U3 + 0.99.*oldu3;

% COST FUNCTION
J = k1*sum(E)*h + k2*sum(I)*h + l1*sum(u1.^2)*h + l2*sum(u2.^2)*h + m1./2*sum(S.^2)*h + m2./2*sum(E.^2)*h+ m3./2*sum(I.^2)*h+ m4/2*sum(R.^2)*h;
Cost1 = k1.*cumsum(E)*h; % Total cost of threatened population
Cost2 = k2.*cumsum(I)*h;
Cost3 = l1.*cumsum(u1.^2)*h;
Cost4 = l2.*cumsum(u2.^2)*h;
Cost5 = m1./2.*cumsum(S.^2)*h;
Cost6 = m2./2.*cumsum(E.^2)*h; % Total cost of control input u1
Cost7 = m3./2.*cumsum(I.^2)*h; % Total cost of control input u2
Cost8 = m4./2.*cumsum(R.^2)*h; % Total cost of control input u3
J2 = Cost1 + Cost2 + Cost3 + Cost4 + Cost5 + Cost6 + Cost7+ Cost8; % Cost at each time for …plotting graphs
% % COST FUNCTION
% J = c1./2*sum(x4.^2)*h + b1./2*sum(u1.^2)*h + b2./2*sum(u2.^2)*h + b3./2*sum(u3.^2)*h + c2*max(x6);
% Cost1 = c1./2.*cumsum(x4.^2)*h; % Total cost of threatened population
% Cost2 = b1./2.*cumsum(u1.^2)*h; % Total cost of control input u1
% Cost3 = b2./2.*cumsum(u2.^2)*h; % Total cost of control input u2
% Cost4 = b2./2.*cumsum(u3.^2)*h; % Total cost of control input u3
% Cost5 = c2.*x6; % Total cost of deceased population
% J2 = Cost1 + Cost2 + Cost3 + Cost4 + Cost5; % Cost at each time for …plotting graphs
%
% CHECK CONVERGENCE TO STOP SWEEP METHOD
temp1 = Delta*sum(abs(u1)) – sum(abs(oldu1 – u1));
temp2 = Delta*sum(abs(u2)) – sum(abs(oldu2 – u2));
temp3 = Delta*sum(abs(S)) – sum(abs(oldS – S));
temp4 = Delta*sum(abs(E)) – sum(abs(oldE – E));
temp5 = Delta*sum(abs(I)) – sum(abs(oldI – I));
temp6 = Delta*sum(abs(R)) – sum(abs(oldR – R));
temp7 = Delta*sum(abs(lambda1)) – sum(abs(oldlambda1 – lambda1));
temp8 = Delta*sum(abs(lambda2)) – sum(abs(oldlambda2 – lambda2));
temp9 = Delta*sum(abs(lambda3)) – sum(abs(oldlambda3 – lambda3));
temp10 = Delta*sum(abs(lambda4)) – sum(abs(oldlambda4 – lambda4));
test = min([temp1 temp2 temp3 temp4 temp5 temp6 temp7 temp8 temp9 temp10]);
end
disp([‘number of loops: ‘ num2str(loopcnt)]);
disp([‘Cost function: ‘ num2str(J)]);
disp([‘Portion deceased: ‘ num2str(max(x6))]);
y(1,:) = t;
y(2,:) = S;
y(3,:) = E;
y(4,:) = I;
y(5,:) = R;
y(9,:) = lambda1;
y(10,:) = lambda2;
y(11,:) = lambda3;
y(12,:) = lambda4;
y(16,:) = u1;
y(17,:) = u2;
y(19,:) = J;
% IMMUNITY REACHED
% imm = x5 + x7.*100; % Percentage immune
% R_per = R*100; % percentage threatened
% x6_per = x6*100; % percentage deceased
plot(y(1,:), y(2,:)), grid on, xlabel(‘t’), ylabel(‘S’) % plotting S
plot(y(1,:), y(3,:)), grid on, xlabel(‘t’), ylabel(‘E’) % plotting E
plot(y(1,:), y(4,:)), grid on, xlabel(‘t’), ylabel(‘I’) % plotting I
plot(y(1,:), y(5,:)), grid on, xlabel(‘t’), ylabel(‘R’) % plotting R
I want the deterministic version of the code test = -1; % Test variable; as long as variable is negative …the while loops keeps repeating
t0 = 0; % Initial time
tf = 100; % Final time
Delta = 0.00001; % Accepted tollerance
M = 999; % Number of nodes
t = linspace(t0, tf, M+1); % Time variable where linspace creates M+1 …equally spaced nodes between t0 and tf, including t0 and tf.
h = tf/M; % Spacing between nodes
h2 = h/2; % Spacing equal to 2 for Runge-Kutta method
% MODEL PARAMETERS
alpha = 1.5;
mu = 0.05;
b1 = 0.05;
b2 = 0.03;
lambda = 1.2;
epsilon2 = 0.55;
epsilon1 = 0.01;
gamma = 0.2;
% WEIGHT FACTORS
k1 = 0.05; % Weight on threatened population
k2 = 0.05; % Weigth on deceased population
l1 = 0.05;
l2 = 0.05;
m1 = 0.025;
m2 = 0.025;
m3 = 0.025;
m4 = 0.025;
% INITIAL CONDITIONS MODEL
S = zeros(1, M+1); % Susceptible
E = zeros(1, M+1); % Exposed
I = zeros(1, M+1); % Infected
R = zeros(1, M+1); % Recovered
S(1) = 99999;
E(1) = 100;
I(1) = 100;
R(1) = 50;
% INITIAL GUESS FOR OPTIMAL CONTROL INPUT
u1 = zeros(1, M+1); % Control input for government intervention
u2 = zeros(1, M+1); % Control input for testing
% INITIAL CONDITIONS ADOINT SYSTEM
lambda1 = zeros(1, M+1);
lambda2 = zeros(1, M+1);
lambda3 = zeros(1, M+1);
lambda4 = zeros(1, M+1);
lambda1(M+1) = 0;
lambda2(M+1) = 0;
lambda3(M+1) = 0;
lambda4(M+1) = 0;
% FORWARD-BACKWARD SWEEP METHOD
loopcnt = 0; % Count number of loops
while(test < 0)
loopcnt = loopcnt + 1;
oldu1 = u1;
oldu2 = u2;
oldS = S;
oldE = E;
oldI = I;
oldR = R;
oldlambda1 = lambda1;
oldlambda2 = lambda2;
oldlambda3 = lambda3;
oldlambda4 = lambda4;

% SYSTEM DYNAMICCS
for i = 1:M

if i > round(tau1 / h)
E_tau1 = E(i-round(tau1/h));
else
E_tau1 = E(1);
end

if i > round(tau2 / h)
I_tau2 = I(i-round(tau2/h));
else
I_tau2 = I(1);
end
m11 = alpha – b1 * (1-u1(i)) * S(i) * E(i) / (S(i)+E(i)+I(i)+R(i)) – b2 * (1-u1(i)) * S(i) * I(i) / (S(i)+E(i)+I(i)+R(i))- mu * S(i);
m12 = b1 * (1-u1(i)) * S(i) * E(i) / (S(i)+E(i)+I(i)+R(i)) + b2 * (1-u1(i)) * S(i) * E(i) / (S(i)+E(i)+I(i)+R(i)) – lambda * E_tau1 – (epsilon1 + mu) * E(i);
m13 = lambda * E_tau1 – epsilon2 * (1+u2(i)) * I_tau2 – (gamma + mu) * I(i);
m14 = epsilon1 * (1+u2(i)) * E(i) + epsilon2 * I_tau2 – mu * R(i);

m21 = alpha – b1 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m11) * (E(i)+h2*m12) / ((S(i)+h2*m11)+(E(i)+h2*m12)+(I(i)+h2*m13)+(R(i)+h2*m14)) – b2 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m11) * (I(i)+h2*m13) / ((S(i)+h2*m11)+(E(i)+h2*m12)+(I(i)+h2*m13)+(R(i)+h2*m14)) – mu * (S(i)+h2*m11);
m22 = b1 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m11) * (E(i)+h2*m12) / ((S(i)+h2*m11)+(E(i)+h2*m12)+(I(i)+h2*m13)+(R(i)+h2*m14)) + b2 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m11) * (I(i)+h2*m13) / ((S(i)+h2*m11)+(E(i)+h2*m12)+(I(i)+h2*m13)+(R(i)+h2*m14)) – lambda * E_tau1 – (epsilon1 + mu) * (E(i)+h2*m12);
m23 = lambda * E_tau1 – epsilon2 * ( 1 + 0.5*(u2(i)+u2(i+1))) * I_tau2 – (gamma + mu) * (I(i)+h2*m13);
m24 = epsilon1 * ( 1 + 0.5*(u2(i)+u2(i+1))) * (E(i)+h2*m12) + epsilon2 * I_tau2 – mu * (R(i)+h2*m14);
m31 = alpha – b1 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m21) * (E(i)+h2*m22) / ((S(i)+h2*m21)+(E(i)+h2*m22)+(I(i)+h2*m23)+(R(i)+h2*m24)) – b2 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m21) * (I(i)+h2*m23) / ((S(i)+h2*m21)+(E(i)+h2*m22)+(I(i)+h2*m23)+(R(i)+h2*m24)) – mu * (S(i)+h2*m21);
m32 = b1 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m21) * (E(i)+h2*m22) / ((S(i)+h2*m21)+(E(i)+h2*m22)+(I(i)+h2*m23)+(R(i)+h2*m24)) + b2 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m21) * (I(i)+h2*m23) / ((S(i)+h2*m21)+(E(i)+h2*m22)+(I(i)+h2*m23)+(R(i)+h2*m24)) – lambda * E_tau1 – (epsilon1 + mu) * (E(i)+h2*m22);
m33 = lambda * E_tau1 – epsilon2 * ( 1 + 0.5*(u2(i)+u2(i+1))) * I_tau2 – (gamma + mu) * (I(i)+h2*m23);
m34 = epsilon1 * ( 1 + 0.5*(u2(i)+u2(i+1))) * (E(i)+h2*m22) + epsilon2 * I_tau2 – mu * (R(i)+h2*m24);
m41 = alpha – b1 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m31) * (E(i)+h2*m32) / ((S(i)+h2*m31)+(E(i)+h2*m32)+(I(i)+h2*m33)+(R(i)+h2*m34)) – b2 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m31) * (I(i)+h2*m33) / ((S(i)+h2*m31)+(E(i)+h2*m32)+(I(i)+h2*m33)+(R(i)+h2*m34)) – mu * (S(i)+h2*m31);
m42 = b1 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m31) * (E(i)+h2*m32) / ((S(i)+h2*m31)+(E(i)+h2*m32)+(I(i)+h2*m33)+(R(i)+h2*m34)) + b2 * ( 1 – 0.5*(u1(i)+u1(i+1))) * (S(i)+h2*m31) * (I(i)+h2*m33) / ((S(i)+h2*m31)+(E(i)+h2*m32)+(I(i)+h2*m33)+(R(i)+h2*m34)) – lambda * E_tau1 – (epsilon1 + mu) * (E(i)+h2*m32);
m43 = lambda * E_tau1 – epsilon2 * ( 1 + 0.5*(u2(i)+u2(i+1))) * I_tau2 – (gamma + mu) * (I(i)+h2*m33);
m44 = epsilon1 * ( 1 + 0.5*(u2(i)+u2(i+1))) * (E(i)+h2*m32) + epsilon2 * I_tau2 – mu * (R(i)+h2*m34);

S(i+1) = S(i) + (h/6)*(m11 + 2*m21 + 2*m31 + m41);
E(i+1) = E(i) + (h/6)*(m12 + 2*m22 + 2*m32 + m42);
I(i+1) = I(i) + (h/6)*(m13 + 2*m23 + 2*m33 + m43);
R(i+1) = R(i) + (h/6)*(m14 + 2*m24 + 2*m34 + m44);
end

% ADJOINT SYSTEM
for i = 1:M % From initial to final value
j = M + 2 – i; % From final value to initial value
n11 = -m1 * S(j) + lambda1(j) * b1 * (1-u1(j)) * E(j) / (S(j)+E(j)+I(j)+R(j)) + lambda1(j) * b2 * (1-u1(j)) * I(j) / (S(j)+E(j)+I(j)+R(j)) + mu * lambda1(j) – b1 * lambda2(j) * (1-u1(j)) * E(j) / (S(j)+E(j)+I(j)+R(j)) – b2 * lambda2(j) * (1-u1(j)) * I(j) / (S(j)+E(j)+I(j)+R(j));
n12 = -k1 – m2 * E(j) + b1 * lambda1(j) * (1-u1(j)) * S(j) / (S(j)+E(j)+I(j)+R(j)) – b1 * lambda2(j) * (1-u1(j)) * S(j) / (S(j)+E(j)+I(j)+R(j)) + lambda * lambda2(j) + epsilon1 * lambda2(j) + mu * lambda2(j) – lambda * lambda3(j) – epsilon1 * lambda4(j) * (1+u2(j));
n13 = -k2 – m3 * I(j) + b2 * lambda1(j) * (1-u1(j)) * S(j) / (S(j)+E(j)+I(j)+R(j)) – b2 * lambda2(j) * (1-u1(j)) * S(j) / (S(j)+E(j)+I(j)+R(j)) + epsilon2 * lambda3(j) * (1+u2(j)) + ( gamma + mu) – epsilon2 * lambda4(j);
n14 = -m4 * R(j) + mu * lambda4(j);

n21 = -m1 * 0.5*(S(j) + S(j-1)) + (lambda1(j)-h2*n11) * b1 * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5*(E(j) + E(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + (lambda1(j)-h2*n11) * b2 * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5*(I(j) + I(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + mu * (lambda1(j)-h2*n11) – b1 * (lambda2(j)-h2*n12) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 *(E(j) + E(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+ 0.5*(I(j)+I(j-1))+0.5*(R(j)+R(j-1))) – b2 * (lambda2(j)-h2*n12) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 *(I(j) + I(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+ 0.5*(I(j)+I(j-1))+0.5*(R(j)+R(j-1)));
n22 = -k1 – m2 * 0.5*(E(j) + E(j-1)) + b1 * (lambda1(j)-h2*n11) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) – b1 * (lambda2(j)-h2*n12) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + lambda * (lambda2(j)-h2*n12) + epsilon1 * (lambda2(j)-h2*n12) + mu * (lambda2(j)-h2*n12) – lambda * (lambda3(j)-h2*n13) – epsilon1 * (lambda4(j)-h2*n14) * (1+(0.5*(u2(j) + u2(j-1))));
n23 = -k2 – m3 * 0.5*(I(j) + I(j-1)) + b2 * (lambda1(j)-h2*n11) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) – b2 * (lambda2(j)-h2*n12) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + epsilon2 * (lambda3(j)-h2*n13) * (1+0.5*(u2(j)+u2(j-1))) + ( gamma + mu) – epsilon2 * (lambda4(j)-h2*n14);
n24 = -m4 * 0.5*(R(j) + R(j-1)) + mu * (lambda4(j)-h2*n14);
n31 = -m1 * 0.5*(S(j) + S(j-1)) + (lambda1(j)-h2*n21) * b1 * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5*(E(j) + E(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + (lambda1(j)-h2*n21) * b2 * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5*(I(j) + I(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + mu * (lambda1(j)-h2*n21) – b1 * (lambda2(j)-h2*n22) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 *(E(j) + E(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+ 0.5*(I(j)+I(j-1))+0.5*(R(j)+R(j-1))) – b2 * (lambda2(j)-h2*n22) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 *(I(j) + I(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+ 0.5*(I(j)+I(j-1))+0.5*(R(j)+R(j-1)));
n32 = -k1 – m2 * 0.5*(E(j) + E(j-1)) + b1 * (lambda1(j)-h2*n21) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) – b1 * (lambda2(j)-h2*n22) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + lambda * (lambda2(j)-h2*n22) + epsilon1 * (lambda2(j)-h2*n22) + mu * (lambda2(j)-h2*n22) – lambda * (lambda3(j)-h2*n23) – epsilon1 * (lambda4(j)-h2*n24) * (1+(0.5*(u2(j) + u2(j-1))));
n33 = -k2 – m3 * 0.5*(I(j) + I(j-1)) + b2 * (lambda1(j)-h2*n21) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) – b2 * (lambda2(j)-h2*n22) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + epsilon2 * (lambda3(j)-h2*n23) * (1+0.5*(u2(j)+u2(j-1))) + ( gamma + mu) – epsilon2 * (lambda4(j)-h2*n24);
n34 = -m4 * 0.5*(R(j) + R(j-1)) + mu * (lambda4(j)-h2*n24);
n41 = -m1 * 0.5*(S(j) + S(j-1)) + (lambda1(j)-h2*n31) * b1 * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5*(E(j) + E(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + (lambda1(j)-h2*n31) * b2 * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5*(I(j) + I(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + mu * (lambda1(j)-h2*n31) – b1 * (lambda2(j)-h2*n32) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 *(E(j) + E(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+ 0.5*(I(j)+I(j-1))+0.5*(R(j)+R(j-1))) – b2 * (lambda2(j)-h2*n32) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 *(I(j) + I(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+ 0.5*(I(j)+I(j-1))+0.5*(R(j)+R(j-1)));
n42 = -k1 – m2 * 0.5*(E(j) + E(j-1)) + b1 * (lambda1(j)-h2*n31) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) – b1 * (lambda2(j)-h2*n32) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + lambda * (lambda2(j)-h2*n32) + epsilon1 * (lambda2(j)-h2*n32) + mu * (lambda2(j)-h2*n32) – lambda * (lambda3(j)-h2*n33) – epsilon1 * (lambda4(j)-h2*n34) * (1+(0.5*(u2(j) + u2(j-1))));
n43 = -k2 – m3 * 0.5*(I(j) + I(j-1)) + b2 * (lambda1(j)-h2*n31) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) – b2 * (lambda2(j)-h2*n32) * (1-(0.5*(u1(j) + u1(j-1)))) * 0.5 * (S(j)+S(j-1)) / (0.5*(S(j)+S(j-1))+0.5*(E(j)+E(j-1))+0.5*(I(j)+I(j-1))+ 0.5*(R(j)+R(j-1))) + epsilon2 * (lambda3(j)-h2*n33) * (1+0.5*(u2(j)+u2(j-1))) + ( gamma + mu) – epsilon2 * (lambda4(j)-h2*n34);
n44 = -m4 * 0.5*(R(j) + R(j-1)) + mu * (lambda4(j)-h2*n34);

lambda1(j-1) = lambda1(j) – (h/6)*(n11 + 2*n21 + 2*n31 + n41);
lambda2(j-1) = lambda2(j) – (h/6)*(n12 + 2*n22 + 2*n32 + n42);
lambda3(j-1) = lambda3(j) – (h/6)*(n13 + 2*n23 + 2*n33 + n43);
lambda4(j-1) = lambda4(j) – (h/6)*(n14 + 2*n24 + 2*n34 + n44);
end

% OPTIMALITY CONDITIONS
U1 = max(0, min(1.0, ((lambda2 – lambda1).*b1.*S.*E + (lambda2 – lambda1).*b2.*S.*I ) ./ (l1 .* (S+E+I+R))));
u1 = 0.01.*U1 + 0.99.*oldu1;
U2 = max(0, min(1.0, ((lambda3 .* epsilon2 .* I – lambda4 .* epsilon1 .* E) ./(l2))));
u2 = 0.01.*U2 + 0.99.*oldu2;

% U1 = max(0, min(1, (L2 – L1).*b1.*x1.*x2./(b1)));
% u1 = 0.01.*U1 + 0.99.*oldu1;
% U2 = min(1.0, max(0, (((L2 – L3).*nu.*x2)./(b2))));
% u2 = 0.01.*U2 + 0.99.*oldu2;
% U3 = min(1.0, max(0, (((L1 – L7).*psi.*x1)./(b3))));
% u3 = 0.01.*U3 + 0.99.*oldu3;

% COST FUNCTION
J = k1*sum(E)*h + k2*sum(I)*h + l1*sum(u1.^2)*h + l2*sum(u2.^2)*h + m1./2*sum(S.^2)*h + m2./2*sum(E.^2)*h+ m3./2*sum(I.^2)*h+ m4/2*sum(R.^2)*h;
Cost1 = k1.*cumsum(E)*h; % Total cost of threatened population
Cost2 = k2.*cumsum(I)*h;
Cost3 = l1.*cumsum(u1.^2)*h;
Cost4 = l2.*cumsum(u2.^2)*h;
Cost5 = m1./2.*cumsum(S.^2)*h;
Cost6 = m2./2.*cumsum(E.^2)*h; % Total cost of control input u1
Cost7 = m3./2.*cumsum(I.^2)*h; % Total cost of control input u2
Cost8 = m4./2.*cumsum(R.^2)*h; % Total cost of control input u3
J2 = Cost1 + Cost2 + Cost3 + Cost4 + Cost5 + Cost6 + Cost7+ Cost8; % Cost at each time for …plotting graphs
% % COST FUNCTION
% J = c1./2*sum(x4.^2)*h + b1./2*sum(u1.^2)*h + b2./2*sum(u2.^2)*h + b3./2*sum(u3.^2)*h + c2*max(x6);
% Cost1 = c1./2.*cumsum(x4.^2)*h; % Total cost of threatened population
% Cost2 = b1./2.*cumsum(u1.^2)*h; % Total cost of control input u1
% Cost3 = b2./2.*cumsum(u2.^2)*h; % Total cost of control input u2
% Cost4 = b2./2.*cumsum(u3.^2)*h; % Total cost of control input u3
% Cost5 = c2.*x6; % Total cost of deceased population
% J2 = Cost1 + Cost2 + Cost3 + Cost4 + Cost5; % Cost at each time for …plotting graphs
%
% CHECK CONVERGENCE TO STOP SWEEP METHOD
temp1 = Delta*sum(abs(u1)) – sum(abs(oldu1 – u1));
temp2 = Delta*sum(abs(u2)) – sum(abs(oldu2 – u2));
temp3 = Delta*sum(abs(S)) – sum(abs(oldS – S));
temp4 = Delta*sum(abs(E)) – sum(abs(oldE – E));
temp5 = Delta*sum(abs(I)) – sum(abs(oldI – I));
temp6 = Delta*sum(abs(R)) – sum(abs(oldR – R));
temp7 = Delta*sum(abs(lambda1)) – sum(abs(oldlambda1 – lambda1));
temp8 = Delta*sum(abs(lambda2)) – sum(abs(oldlambda2 – lambda2));
temp9 = Delta*sum(abs(lambda3)) – sum(abs(oldlambda3 – lambda3));
temp10 = Delta*sum(abs(lambda4)) – sum(abs(oldlambda4 – lambda4));
test = min([temp1 temp2 temp3 temp4 temp5 temp6 temp7 temp8 temp9 temp10]);
end
disp([‘number of loops: ‘ num2str(loopcnt)]);
disp([‘Cost function: ‘ num2str(J)]);
disp([‘Portion deceased: ‘ num2str(max(x6))]);
y(1,:) = t;
y(2,:) = S;
y(3,:) = E;
y(4,:) = I;
y(5,:) = R;
y(9,:) = lambda1;
y(10,:) = lambda2;
y(11,:) = lambda3;
y(12,:) = lambda4;
y(16,:) = u1;
y(17,:) = u2;
y(19,:) = J;
% IMMUNITY REACHED
% imm = x5 + x7.*100; % Percentage immune
% R_per = R*100; % percentage threatened
% x6_per = x6*100; % percentage deceased
plot(y(1,:), y(2,:)), grid on, xlabel(‘t’), ylabel(‘S’) % plotting S
plot(y(1,:), y(3,:)), grid on, xlabel(‘t’), ylabel(‘E’) % plotting E
plot(y(1,:), y(4,:)), grid on, xlabel(‘t’), ylabel(‘I’) % plotting I
plot(y(1,:), y(5,:)), grid on, xlabel(‘t’), ylabel(‘R’) % plotting R
I want the deterministic version of the code plotting MATLAB Answers — New Questions

​

Tags: matlab

Share this!

Related posts

Warning: Error updating FunctionLine in using fplot
2025-05-12

Warning: Error updating FunctionLine in using fplot

Solid creation Simulink, simscape multibody: stuck in loading
2025-05-12

Solid creation Simulink, simscape multibody: stuck in loading

Issues with EMG Signal Acquisition via Simulink Desktop Real-Time (SDRT) and DAQ Board Usage
2025-05-12

Issues with EMG Signal Acquisition via Simulink Desktop Real-Time (SDRT) and DAQ Board Usage

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Search

Categories

  • Matlab
  • Microsoft
  • News
  • Other
Application Package Repository Telkom University

Tags

matlab microsoft opensources
Application Package Download License

Application Package Download License

Adobe
Google for Education
IBM
Matlab
Microsoft
Wordpress
Visual Paradigm
Opensource

Sign Up For Newsletters

Be the First to Know. Sign up for newsletter today

Application Package Repository Telkom University

Portal Application Package Repository Telkom University, for internal use only, empower civitas academica in study and research.

Information

  • Telkom University
  • About Us
  • Contact
  • Forum Discussion
  • FAQ
  • Helpdesk Ticket

Contact Us

  • Ask: Any question please read FAQ
  • Mail: helpdesk@telkomuniversity.ac.id
  • Call: +62 823-1994-9941
  • WA: +62 823-1994-9943
  • Site: Gedung Panambulai. Jl. Telekomunikasi

Copyright © Telkom University. All Rights Reserved. ch

  • FAQ
  • Privacy Policy
  • Term

This Application Package for internal Telkom University only (students and employee). Chiers... Dismiss