Inverse model for feedforward control
Hello,
I want to implement a feedforward control for good trajectory tracking (feedback path for disturbance rejection comes afterwards).
The system model is an electrical RL-circuit in series with a voltage source. (schematics).
I determined the continuous transfer function to be:
The inverse of this is
(I know that this transfer function can not be realized in physical systems since, but I would hope that simulink lets me simulate the ideal system).
If I combine G^-1 and G in simulink, I would expect to obtain ideal trajectory tracking, because G^-1 * G = 1
However the following model only achieves ideal tracking, if I add a factor of 6 at the marked position. (R=3, L – 0.004, solver is fixed step ode4, 1e-4s stepsize)
Why do I need to add a factor of 6 there?Hello,
I want to implement a feedforward control for good trajectory tracking (feedback path for disturbance rejection comes afterwards).
The system model is an electrical RL-circuit in series with a voltage source. (schematics).
I determined the continuous transfer function to be:
The inverse of this is
(I know that this transfer function can not be realized in physical systems since, but I would hope that simulink lets me simulate the ideal system).
If I combine G^-1 and G in simulink, I would expect to obtain ideal trajectory tracking, because G^-1 * G = 1
However the following model only achieves ideal tracking, if I add a factor of 6 at the marked position. (R=3, L – 0.004, solver is fixed step ode4, 1e-4s stepsize)
Why do I need to add a factor of 6 there? Hello,
I want to implement a feedforward control for good trajectory tracking (feedback path for disturbance rejection comes afterwards).
The system model is an electrical RL-circuit in series with a voltage source. (schematics).
I determined the continuous transfer function to be:
The inverse of this is
(I know that this transfer function can not be realized in physical systems since, but I would hope that simulink lets me simulate the ideal system).
If I combine G^-1 and G in simulink, I would expect to obtain ideal trajectory tracking, because G^-1 * G = 1
However the following model only achieves ideal tracking, if I add a factor of 6 at the marked position. (R=3, L – 0.004, solver is fixed step ode4, 1e-4s stepsize)
Why do I need to add a factor of 6 there? simulink, feedforward, control, laplace MATLAB Answers — New Questions