ive been trying to generate vhdl code using hdl code genrator on matlab 2020a but its showing error regarding the use of fi in my code , can someone fix it for me ? thankyou
this is my code : MATLAB FUNCTION
function [received_signal_real, received_signal_imag, error_rate] = hdl_compatible_code(n, channel_type)
% Constants
aircraft_altitude = fi(45000,1,32,10); % Altitude of the aircraft in feet
distance_km = fi(350,1,32,10); % Distance between aircraft and base station in kilometers
speed_of_light = fi(3e8,1,32,10); % Speed of light in m/s
n = 100;
% Pathloss model – Free Space Path Loss (FSPL)
fc = fi(1.5e9,1,32,10); % Carrier frequency in Hz (1.5GHz)
lambda = speed_of_light / fc; % Wavelength
path_loss_dB = 20 *log10_approx(fi(4 * pi * distance_km * 1e3 / lambda,1,32,10)); % Path loss in dB
% AWGN
SNR_dB_awgn = fi(10,1,32,10); % Signal to noise ratio in dB for AWGN channel
SNR_awgn = fi(fi(10)^(SNR_dB_awgn / 10),1,32,10); % Convert SNR to linear scale for AWGN channel
tx_power_awgn = fi(1,1,32,10); % Initial guess for transmit power for AWGN channel
noise_power_awgn = tx_power_awgn / SNR_awgn; % Noise power based on SNR for AWGN channel
% Doppler spread
aircraft_speed = fi(660,1,32,10); % Average aircraft speed in meters per second
fd_max = fi(((aircraft_speed * fi(0.51444,1,32,10) * fc) / speed_of_light),1,32,10); % Doppler frequency shift
% Modulation using lookup table
% Precompute constellation points (Scalar approach)
constellation_points = [fi(1,1,16,10), fi(1i,1,16,10),fi(-1,1,16,10), fi(-1i,1,16,10)];
% Modulation
data = lfsr_data(n); % Generate random bits
qpsk_symbols = constellation_points(data + 1); % QPSK modulation: symbol mapping to complex constellation points
% Generate doppler effect using lookup table
two_pi_fd_max = fi(2*pi*fd_max,1,128,10);
t = fi((0:n-1) /n,1,32,10); % Time vector
doppler_shift = cos_lookup(fi((2 * pi * fd_max * t),1,32,10));
% Channel simulation
if channel_type == 0 % AWGN channel
noise_real = sqrt(noise_power_awgn / 2) * lfsr_noise(n); % Generate noise for real part
noise_imag = sqrt(noise_power_awgn / 2) * lfsr_noise(n); % Generate noise for imaginary part
received_signal = (qpsk_symbols .* doppler_shift) + noise_real + fi(1i,1,16,10) * noise_imag; % Received signal in AWGN channel
elseif channel_type == 1 % Rician fading channel
% Rician channel parameters
K =fi( 5,1,32,10); % Rician factor
LOS_power_dB =fi( -10,1,32,10); % Line of sight power in dB
LOS_power_linear = pow2(fi(10,1,32,10),LOS_power_dB/10); % Convert LOS power to linear scale
K_linear = pow2(fi(10,1,32,10),K/10); % Convert Rician factor to linear scale
% Generate fading coefficients
LOS = sqrt(LOS_power_linear / (2 * (1 + 1 / K_linear))) * ones(1, n,’like’,fi(0,1,16,10)); % LOS component
scattering = sqrt(LOS_power_linear / (2 * (1 + K_linear))) * (lfsr_noise(n) +fi( 1i,1,16,10) * lfsr_noise(n)); % Scattering component
fading_coefficient = LOS + scattering; % Rician fading coefficients
received_signal = (qpsk_symbols .* fading_coefficient .* doppler_shift); % Apply fading to the transmitted signal
% Add noise to the received signal in Rician channel
noise_real_rician = sqrt(noise_power_awgn / 2) * lfsr_noise(n); % Generate noise for real part
noise_imag_rician = sqrt(noise_power_awgn / 2) * lfsr_noise(n); % Generate noise for imaginary part
received_signal = fi((received_signal + noise_real_rician + fi(1i,1,16,10) * noise_imag_rician),1,49,20); % Add noise
else
error(‘hdl_compatible_code:UnknownChannelType’, ‘Unknown channel type’);
end
% QPSK demodulation
% Hard decision demodulation
% Decision regions
decision_regions = [fi(-1-1i,1,16,10), fi(-1+1i,1,16,10), fi(1-1i,1,16,10), fi(1+1i,1,16,10)];
% Initialize demodulated symbols
demodulated_symbols = zeros(1, n,’uint8′);
for i = 1:n
%Seperate real and imaginary part of received_signal and
%decision_regions
received_real = real(received_signal(i));
received_imag = imag(received_signal(i));
decision_real = real(decision_regions);
decision_imag = imag(decision_regions);
%Compute the absolute difference for real and imaginary parts
%seperately
diff_real = received_real – decision_real;
diff_imag = received_imag – decision_imag;
%Compute the absolute value using Pythagorean theorem
abs_diff = sqrt(diff_real.^2+diff_imag.^2);
%Find the index corresponding to the minimum absoloute difference
[~,~]=min(abs_diff);
end
% Calculate the error rate
errors = sum(bitxor(fi((data),0,8,0), fi((demodulated_symbols),0,8,0))); % Count errors
% Extract real and imaginary parts
received_signal_real = real(received_signal);
received_signal_imag = imag(received_signal);
error_rate = errors / n; % Calculate error rate
end
function noise = lfsr_noise(n)
% Linear feedback shift register (LFSR) for pseudo-random number generation
% Initialize LFSR state
lfsr_state = uint32(1);
noise = zeros(1, n,’like’,fi(0,1,16,10));
for i = 1:n
% Generate pseudo-random bit using xor feedback
new_bit = bitxor(bitget(lfsr_state, 1), bitget(lfsr_state, 3));
lfsr_state = bitshift(lfsr_state, -1);
lfsr_state = bitset(lfsr_state, 32, new_bit);
noise(i) = fi(lfsr_state,0,32,0) / fi(intmax(‘uint32’),1,16,10); % Scale [0,1]
end
end
function data = lfsr_data(n)
% Linear feedback shift register (LFSR) for generating random data
% Initialize LFSR state
lfsr_state = uint32(1);
data = zeros(1, n, ‘uint8’);
for i = 1:n
% Generate pseudo-random bit using xor feedback
new_bit = bitxor(bitget(lfsr_state, 1), bitget(lfsr_state, 3));
lfsr_state = bitshift(lfsr_state, -1);
lfsr_state = bitset(lfsr_state, 32, new_bit);
data(i) = fi((mod(lfsr_state,4)),0,2,0); % Generate random values in the range [0, 3]
end
end
function cos_value = cos_lookup(angle)
% Precompute cosine values for a range of angles
angles =fi( (0:0.01:2*pi),1,32,10); % Define the range of angles (adjust the step size as needed)
cos_values = fi((cos(angles)),1,16,10); % Compute cosine values
% Interpolate the cosine value for the given angle
cos_value = fi((zeros(size(angle))),1,16,10);
for i = 1:numel(angle)
[~,idx]=min(abs(angles-angle(i)));
cos_value(i)=cos_values(idx);
end
end
function y = log2_approx(x)
%Fixed-point logarithm base 2 approximation
y = fi(0,1,32,10);%Initialize y as fixed-point format
one = fi(1,1,32,10);%Define one in the same fixed-point format
sqrt2 = fi((sqrt(2)),1,32,10);%Define sqrt(2) in the same fixed -point format
for i = 1:32 %Limiting the iterations to 32 to avoid infinite loop
if x > one
x = bitsra(x,1);
y = fi((y + one),1,32,10);
end
end
frac = fi (0.5,1,32,10);
for i = 1:32
if x < one
x = bitsll(x,1);
y =fi( (y – one),1,32,10);
end
end
frac = fi (0.5,1,32,10);
two_pow_neg32 = fi((2^-32),1,32,10);
for i = 1:32
if x >= sqrt2
x = divide(x,sqrt2);
y =fi((y + frac) , 1,32,10);
end
frac = divide(frac,2);
end
end
function y = log10_approx(x)
%Approximate log10 function using a fixed-point approach
y = log2_approx(x)/ log2_approx(fi(10,1,32,10));
end
function result = divide(a,b)
%custom fixed-point division function
result = a/b;
result = fi(result,a.Signed,a.WordLength,a.FractionLength);
endthis is my code : MATLAB FUNCTION
function [received_signal_real, received_signal_imag, error_rate] = hdl_compatible_code(n, channel_type)
% Constants
aircraft_altitude = fi(45000,1,32,10); % Altitude of the aircraft in feet
distance_km = fi(350,1,32,10); % Distance between aircraft and base station in kilometers
speed_of_light = fi(3e8,1,32,10); % Speed of light in m/s
n = 100;
% Pathloss model – Free Space Path Loss (FSPL)
fc = fi(1.5e9,1,32,10); % Carrier frequency in Hz (1.5GHz)
lambda = speed_of_light / fc; % Wavelength
path_loss_dB = 20 *log10_approx(fi(4 * pi * distance_km * 1e3 / lambda,1,32,10)); % Path loss in dB
% AWGN
SNR_dB_awgn = fi(10,1,32,10); % Signal to noise ratio in dB for AWGN channel
SNR_awgn = fi(fi(10)^(SNR_dB_awgn / 10),1,32,10); % Convert SNR to linear scale for AWGN channel
tx_power_awgn = fi(1,1,32,10); % Initial guess for transmit power for AWGN channel
noise_power_awgn = tx_power_awgn / SNR_awgn; % Noise power based on SNR for AWGN channel
% Doppler spread
aircraft_speed = fi(660,1,32,10); % Average aircraft speed in meters per second
fd_max = fi(((aircraft_speed * fi(0.51444,1,32,10) * fc) / speed_of_light),1,32,10); % Doppler frequency shift
% Modulation using lookup table
% Precompute constellation points (Scalar approach)
constellation_points = [fi(1,1,16,10), fi(1i,1,16,10),fi(-1,1,16,10), fi(-1i,1,16,10)];
% Modulation
data = lfsr_data(n); % Generate random bits
qpsk_symbols = constellation_points(data + 1); % QPSK modulation: symbol mapping to complex constellation points
% Generate doppler effect using lookup table
two_pi_fd_max = fi(2*pi*fd_max,1,128,10);
t = fi((0:n-1) /n,1,32,10); % Time vector
doppler_shift = cos_lookup(fi((2 * pi * fd_max * t),1,32,10));
% Channel simulation
if channel_type == 0 % AWGN channel
noise_real = sqrt(noise_power_awgn / 2) * lfsr_noise(n); % Generate noise for real part
noise_imag = sqrt(noise_power_awgn / 2) * lfsr_noise(n); % Generate noise for imaginary part
received_signal = (qpsk_symbols .* doppler_shift) + noise_real + fi(1i,1,16,10) * noise_imag; % Received signal in AWGN channel
elseif channel_type == 1 % Rician fading channel
% Rician channel parameters
K =fi( 5,1,32,10); % Rician factor
LOS_power_dB =fi( -10,1,32,10); % Line of sight power in dB
LOS_power_linear = pow2(fi(10,1,32,10),LOS_power_dB/10); % Convert LOS power to linear scale
K_linear = pow2(fi(10,1,32,10),K/10); % Convert Rician factor to linear scale
% Generate fading coefficients
LOS = sqrt(LOS_power_linear / (2 * (1 + 1 / K_linear))) * ones(1, n,’like’,fi(0,1,16,10)); % LOS component
scattering = sqrt(LOS_power_linear / (2 * (1 + K_linear))) * (lfsr_noise(n) +fi( 1i,1,16,10) * lfsr_noise(n)); % Scattering component
fading_coefficient = LOS + scattering; % Rician fading coefficients
received_signal = (qpsk_symbols .* fading_coefficient .* doppler_shift); % Apply fading to the transmitted signal
% Add noise to the received signal in Rician channel
noise_real_rician = sqrt(noise_power_awgn / 2) * lfsr_noise(n); % Generate noise for real part
noise_imag_rician = sqrt(noise_power_awgn / 2) * lfsr_noise(n); % Generate noise for imaginary part
received_signal = fi((received_signal + noise_real_rician + fi(1i,1,16,10) * noise_imag_rician),1,49,20); % Add noise
else
error(‘hdl_compatible_code:UnknownChannelType’, ‘Unknown channel type’);
end
% QPSK demodulation
% Hard decision demodulation
% Decision regions
decision_regions = [fi(-1-1i,1,16,10), fi(-1+1i,1,16,10), fi(1-1i,1,16,10), fi(1+1i,1,16,10)];
% Initialize demodulated symbols
demodulated_symbols = zeros(1, n,’uint8′);
for i = 1:n
%Seperate real and imaginary part of received_signal and
%decision_regions
received_real = real(received_signal(i));
received_imag = imag(received_signal(i));
decision_real = real(decision_regions);
decision_imag = imag(decision_regions);
%Compute the absolute difference for real and imaginary parts
%seperately
diff_real = received_real – decision_real;
diff_imag = received_imag – decision_imag;
%Compute the absolute value using Pythagorean theorem
abs_diff = sqrt(diff_real.^2+diff_imag.^2);
%Find the index corresponding to the minimum absoloute difference
[~,~]=min(abs_diff);
end
% Calculate the error rate
errors = sum(bitxor(fi((data),0,8,0), fi((demodulated_symbols),0,8,0))); % Count errors
% Extract real and imaginary parts
received_signal_real = real(received_signal);
received_signal_imag = imag(received_signal);
error_rate = errors / n; % Calculate error rate
end
function noise = lfsr_noise(n)
% Linear feedback shift register (LFSR) for pseudo-random number generation
% Initialize LFSR state
lfsr_state = uint32(1);
noise = zeros(1, n,’like’,fi(0,1,16,10));
for i = 1:n
% Generate pseudo-random bit using xor feedback
new_bit = bitxor(bitget(lfsr_state, 1), bitget(lfsr_state, 3));
lfsr_state = bitshift(lfsr_state, -1);
lfsr_state = bitset(lfsr_state, 32, new_bit);
noise(i) = fi(lfsr_state,0,32,0) / fi(intmax(‘uint32’),1,16,10); % Scale [0,1]
end
end
function data = lfsr_data(n)
% Linear feedback shift register (LFSR) for generating random data
% Initialize LFSR state
lfsr_state = uint32(1);
data = zeros(1, n, ‘uint8’);
for i = 1:n
% Generate pseudo-random bit using xor feedback
new_bit = bitxor(bitget(lfsr_state, 1), bitget(lfsr_state, 3));
lfsr_state = bitshift(lfsr_state, -1);
lfsr_state = bitset(lfsr_state, 32, new_bit);
data(i) = fi((mod(lfsr_state,4)),0,2,0); % Generate random values in the range [0, 3]
end
end
function cos_value = cos_lookup(angle)
% Precompute cosine values for a range of angles
angles =fi( (0:0.01:2*pi),1,32,10); % Define the range of angles (adjust the step size as needed)
cos_values = fi((cos(angles)),1,16,10); % Compute cosine values
% Interpolate the cosine value for the given angle
cos_value = fi((zeros(size(angle))),1,16,10);
for i = 1:numel(angle)
[~,idx]=min(abs(angles-angle(i)));
cos_value(i)=cos_values(idx);
end
end
function y = log2_approx(x)
%Fixed-point logarithm base 2 approximation
y = fi(0,1,32,10);%Initialize y as fixed-point format
one = fi(1,1,32,10);%Define one in the same fixed-point format
sqrt2 = fi((sqrt(2)),1,32,10);%Define sqrt(2) in the same fixed -point format
for i = 1:32 %Limiting the iterations to 32 to avoid infinite loop
if x > one
x = bitsra(x,1);
y = fi((y + one),1,32,10);
end
end
frac = fi (0.5,1,32,10);
for i = 1:32
if x < one
x = bitsll(x,1);
y =fi( (y – one),1,32,10);
end
end
frac = fi (0.5,1,32,10);
two_pow_neg32 = fi((2^-32),1,32,10);
for i = 1:32
if x >= sqrt2
x = divide(x,sqrt2);
y =fi((y + frac) , 1,32,10);
end
frac = divide(frac,2);
end
end
function y = log10_approx(x)
%Approximate log10 function using a fixed-point approach
y = log2_approx(x)/ log2_approx(fi(10,1,32,10));
end
function result = divide(a,b)
%custom fixed-point division function
result = a/b;
result = fi(result,a.Signed,a.WordLength,a.FractionLength);
end this is my code : MATLAB FUNCTION
function [received_signal_real, received_signal_imag, error_rate] = hdl_compatible_code(n, channel_type)
% Constants
aircraft_altitude = fi(45000,1,32,10); % Altitude of the aircraft in feet
distance_km = fi(350,1,32,10); % Distance between aircraft and base station in kilometers
speed_of_light = fi(3e8,1,32,10); % Speed of light in m/s
n = 100;
% Pathloss model – Free Space Path Loss (FSPL)
fc = fi(1.5e9,1,32,10); % Carrier frequency in Hz (1.5GHz)
lambda = speed_of_light / fc; % Wavelength
path_loss_dB = 20 *log10_approx(fi(4 * pi * distance_km * 1e3 / lambda,1,32,10)); % Path loss in dB
% AWGN
SNR_dB_awgn = fi(10,1,32,10); % Signal to noise ratio in dB for AWGN channel
SNR_awgn = fi(fi(10)^(SNR_dB_awgn / 10),1,32,10); % Convert SNR to linear scale for AWGN channel
tx_power_awgn = fi(1,1,32,10); % Initial guess for transmit power for AWGN channel
noise_power_awgn = tx_power_awgn / SNR_awgn; % Noise power based on SNR for AWGN channel
% Doppler spread
aircraft_speed = fi(660,1,32,10); % Average aircraft speed in meters per second
fd_max = fi(((aircraft_speed * fi(0.51444,1,32,10) * fc) / speed_of_light),1,32,10); % Doppler frequency shift
% Modulation using lookup table
% Precompute constellation points (Scalar approach)
constellation_points = [fi(1,1,16,10), fi(1i,1,16,10),fi(-1,1,16,10), fi(-1i,1,16,10)];
% Modulation
data = lfsr_data(n); % Generate random bits
qpsk_symbols = constellation_points(data + 1); % QPSK modulation: symbol mapping to complex constellation points
% Generate doppler effect using lookup table
two_pi_fd_max = fi(2*pi*fd_max,1,128,10);
t = fi((0:n-1) /n,1,32,10); % Time vector
doppler_shift = cos_lookup(fi((2 * pi * fd_max * t),1,32,10));
% Channel simulation
if channel_type == 0 % AWGN channel
noise_real = sqrt(noise_power_awgn / 2) * lfsr_noise(n); % Generate noise for real part
noise_imag = sqrt(noise_power_awgn / 2) * lfsr_noise(n); % Generate noise for imaginary part
received_signal = (qpsk_symbols .* doppler_shift) + noise_real + fi(1i,1,16,10) * noise_imag; % Received signal in AWGN channel
elseif channel_type == 1 % Rician fading channel
% Rician channel parameters
K =fi( 5,1,32,10); % Rician factor
LOS_power_dB =fi( -10,1,32,10); % Line of sight power in dB
LOS_power_linear = pow2(fi(10,1,32,10),LOS_power_dB/10); % Convert LOS power to linear scale
K_linear = pow2(fi(10,1,32,10),K/10); % Convert Rician factor to linear scale
% Generate fading coefficients
LOS = sqrt(LOS_power_linear / (2 * (1 + 1 / K_linear))) * ones(1, n,’like’,fi(0,1,16,10)); % LOS component
scattering = sqrt(LOS_power_linear / (2 * (1 + K_linear))) * (lfsr_noise(n) +fi( 1i,1,16,10) * lfsr_noise(n)); % Scattering component
fading_coefficient = LOS + scattering; % Rician fading coefficients
received_signal = (qpsk_symbols .* fading_coefficient .* doppler_shift); % Apply fading to the transmitted signal
% Add noise to the received signal in Rician channel
noise_real_rician = sqrt(noise_power_awgn / 2) * lfsr_noise(n); % Generate noise for real part
noise_imag_rician = sqrt(noise_power_awgn / 2) * lfsr_noise(n); % Generate noise for imaginary part
received_signal = fi((received_signal + noise_real_rician + fi(1i,1,16,10) * noise_imag_rician),1,49,20); % Add noise
else
error(‘hdl_compatible_code:UnknownChannelType’, ‘Unknown channel type’);
end
% QPSK demodulation
% Hard decision demodulation
% Decision regions
decision_regions = [fi(-1-1i,1,16,10), fi(-1+1i,1,16,10), fi(1-1i,1,16,10), fi(1+1i,1,16,10)];
% Initialize demodulated symbols
demodulated_symbols = zeros(1, n,’uint8′);
for i = 1:n
%Seperate real and imaginary part of received_signal and
%decision_regions
received_real = real(received_signal(i));
received_imag = imag(received_signal(i));
decision_real = real(decision_regions);
decision_imag = imag(decision_regions);
%Compute the absolute difference for real and imaginary parts
%seperately
diff_real = received_real – decision_real;
diff_imag = received_imag – decision_imag;
%Compute the absolute value using Pythagorean theorem
abs_diff = sqrt(diff_real.^2+diff_imag.^2);
%Find the index corresponding to the minimum absoloute difference
[~,~]=min(abs_diff);
end
% Calculate the error rate
errors = sum(bitxor(fi((data),0,8,0), fi((demodulated_symbols),0,8,0))); % Count errors
% Extract real and imaginary parts
received_signal_real = real(received_signal);
received_signal_imag = imag(received_signal);
error_rate = errors / n; % Calculate error rate
end
function noise = lfsr_noise(n)
% Linear feedback shift register (LFSR) for pseudo-random number generation
% Initialize LFSR state
lfsr_state = uint32(1);
noise = zeros(1, n,’like’,fi(0,1,16,10));
for i = 1:n
% Generate pseudo-random bit using xor feedback
new_bit = bitxor(bitget(lfsr_state, 1), bitget(lfsr_state, 3));
lfsr_state = bitshift(lfsr_state, -1);
lfsr_state = bitset(lfsr_state, 32, new_bit);
noise(i) = fi(lfsr_state,0,32,0) / fi(intmax(‘uint32’),1,16,10); % Scale [0,1]
end
end
function data = lfsr_data(n)
% Linear feedback shift register (LFSR) for generating random data
% Initialize LFSR state
lfsr_state = uint32(1);
data = zeros(1, n, ‘uint8’);
for i = 1:n
% Generate pseudo-random bit using xor feedback
new_bit = bitxor(bitget(lfsr_state, 1), bitget(lfsr_state, 3));
lfsr_state = bitshift(lfsr_state, -1);
lfsr_state = bitset(lfsr_state, 32, new_bit);
data(i) = fi((mod(lfsr_state,4)),0,2,0); % Generate random values in the range [0, 3]
end
end
function cos_value = cos_lookup(angle)
% Precompute cosine values for a range of angles
angles =fi( (0:0.01:2*pi),1,32,10); % Define the range of angles (adjust the step size as needed)
cos_values = fi((cos(angles)),1,16,10); % Compute cosine values
% Interpolate the cosine value for the given angle
cos_value = fi((zeros(size(angle))),1,16,10);
for i = 1:numel(angle)
[~,idx]=min(abs(angles-angle(i)));
cos_value(i)=cos_values(idx);
end
end
function y = log2_approx(x)
%Fixed-point logarithm base 2 approximation
y = fi(0,1,32,10);%Initialize y as fixed-point format
one = fi(1,1,32,10);%Define one in the same fixed-point format
sqrt2 = fi((sqrt(2)),1,32,10);%Define sqrt(2) in the same fixed -point format
for i = 1:32 %Limiting the iterations to 32 to avoid infinite loop
if x > one
x = bitsra(x,1);
y = fi((y + one),1,32,10);
end
end
frac = fi (0.5,1,32,10);
for i = 1:32
if x < one
x = bitsll(x,1);
y =fi( (y – one),1,32,10);
end
end
frac = fi (0.5,1,32,10);
two_pow_neg32 = fi((2^-32),1,32,10);
for i = 1:32
if x >= sqrt2
x = divide(x,sqrt2);
y =fi((y + frac) , 1,32,10);
end
frac = divide(frac,2);
end
end
function y = log10_approx(x)
%Approximate log10 function using a fixed-point approach
y = log2_approx(x)/ log2_approx(fi(10,1,32,10));
end
function result = divide(a,b)
%custom fixed-point division function
result = a/b;
result = fi(result,a.Signed,a.WordLength,a.FractionLength);
end hdl coder compatible code MATLAB Answers — New Questions