Numerical method to solve matric for eigen values of matrix (the input of matrix is an array)?
Data1 = readtable(‘D:VIT PHDWork 3 _ Exceptional SensingCST FilesAeiphi.xlsx’);
T1=table2array(Data1);
freq = T1(:,2); % Frequency (in THz)
txx = T1(:,3); % Amplitude of Co-Polarozation XX
P1 = T1(:,4); % Phase of Co-Polarozation XX
tyy = T1(:,5); % Amplitude of Co-Polarozation YY
P2 = T1(:,6); % Phase of Co-Polarozation YY
txy = T1(:,7); % Amplitude of Cross-Polarozation XY
P3 = T1(:,8); % Phase of Cross-Polarozation XY
tyx = T1(:,9); % Amplitude of Cross-Polarozation YX
P4 = T1(:,10); % Phase of Cross-Polarozation YX
T_XX = txx.*exp(1i.*P1); % Transmittance of co – polarozation of XX
T_YY = tyy.*exp(1i.*P2); % Transmittance of co – polarizarion of yy
T_XY = txy.*exp(1i.*P3); % Transmittance of cross polarization of xy
T_YX = tyx.*exp(1i.*P4); % Transmittance of cross polarization of yx
TT = table(T_XX,T_YY,T_XY,T_YX);
%%%% Eigen Matrix
ii = 1:1:1002;
n = length(ii);
for i = 1:n
T = [T_XX(i,1), T_XY(i,1); T_YX(i,1), T_YY(i,1)]; % Eigen Matrix for each frequency
E = eig(T); % Eigen Values
val = [E(1,1), E(2,1)]; % Reordering the Matrix
E1(i,1) = val(:,1); % Eigen Value 1
E2(i,1) = val(:,2); % Eigen value 2
ii=ii+1;
ES1(:,1) = real(E1(:,1));
ES2(:,1) = real(E2(:,1));
ephi1(:,1) = imag(E1(:,1));
ephi2(:,1) = imag(E2(:,1));
end
%% From eigen values separate real and imaginary part.
% (Real part: Transmission coffecient, Imaginary part: Phase)
a = abs(ES1);
b = abs(ES2);
c = ephi1;
d = ephi2;
T2 = table(a,b,c,d)
figure
plot(freq,a) % Plot of freq vs real eigen value 1 and 2
plot(freq,b)
ylim([0 1])
plot(freq,ephi1,freq,ephi2) % Plot of freq vs imag eigen value 1 and 2
ylim([-0.6 0.6])Data1 = readtable(‘D:VIT PHDWork 3 _ Exceptional SensingCST FilesAeiphi.xlsx’);
T1=table2array(Data1);
freq = T1(:,2); % Frequency (in THz)
txx = T1(:,3); % Amplitude of Co-Polarozation XX
P1 = T1(:,4); % Phase of Co-Polarozation XX
tyy = T1(:,5); % Amplitude of Co-Polarozation YY
P2 = T1(:,6); % Phase of Co-Polarozation YY
txy = T1(:,7); % Amplitude of Cross-Polarozation XY
P3 = T1(:,8); % Phase of Cross-Polarozation XY
tyx = T1(:,9); % Amplitude of Cross-Polarozation YX
P4 = T1(:,10); % Phase of Cross-Polarozation YX
T_XX = txx.*exp(1i.*P1); % Transmittance of co – polarozation of XX
T_YY = tyy.*exp(1i.*P2); % Transmittance of co – polarizarion of yy
T_XY = txy.*exp(1i.*P3); % Transmittance of cross polarization of xy
T_YX = tyx.*exp(1i.*P4); % Transmittance of cross polarization of yx
TT = table(T_XX,T_YY,T_XY,T_YX);
%%%% Eigen Matrix
ii = 1:1:1002;
n = length(ii);
for i = 1:n
T = [T_XX(i,1), T_XY(i,1); T_YX(i,1), T_YY(i,1)]; % Eigen Matrix for each frequency
E = eig(T); % Eigen Values
val = [E(1,1), E(2,1)]; % Reordering the Matrix
E1(i,1) = val(:,1); % Eigen Value 1
E2(i,1) = val(:,2); % Eigen value 2
ii=ii+1;
ES1(:,1) = real(E1(:,1));
ES2(:,1) = real(E2(:,1));
ephi1(:,1) = imag(E1(:,1));
ephi2(:,1) = imag(E2(:,1));
end
%% From eigen values separate real and imaginary part.
% (Real part: Transmission coffecient, Imaginary part: Phase)
a = abs(ES1);
b = abs(ES2);
c = ephi1;
d = ephi2;
T2 = table(a,b,c,d)
figure
plot(freq,a) % Plot of freq vs real eigen value 1 and 2
plot(freq,b)
ylim([0 1])
plot(freq,ephi1,freq,ephi2) % Plot of freq vs imag eigen value 1 and 2
ylim([-0.6 0.6]) Data1 = readtable(‘D:VIT PHDWork 3 _ Exceptional SensingCST FilesAeiphi.xlsx’);
T1=table2array(Data1);
freq = T1(:,2); % Frequency (in THz)
txx = T1(:,3); % Amplitude of Co-Polarozation XX
P1 = T1(:,4); % Phase of Co-Polarozation XX
tyy = T1(:,5); % Amplitude of Co-Polarozation YY
P2 = T1(:,6); % Phase of Co-Polarozation YY
txy = T1(:,7); % Amplitude of Cross-Polarozation XY
P3 = T1(:,8); % Phase of Cross-Polarozation XY
tyx = T1(:,9); % Amplitude of Cross-Polarozation YX
P4 = T1(:,10); % Phase of Cross-Polarozation YX
T_XX = txx.*exp(1i.*P1); % Transmittance of co – polarozation of XX
T_YY = tyy.*exp(1i.*P2); % Transmittance of co – polarizarion of yy
T_XY = txy.*exp(1i.*P3); % Transmittance of cross polarization of xy
T_YX = tyx.*exp(1i.*P4); % Transmittance of cross polarization of yx
TT = table(T_XX,T_YY,T_XY,T_YX);
%%%% Eigen Matrix
ii = 1:1:1002;
n = length(ii);
for i = 1:n
T = [T_XX(i,1), T_XY(i,1); T_YX(i,1), T_YY(i,1)]; % Eigen Matrix for each frequency
E = eig(T); % Eigen Values
val = [E(1,1), E(2,1)]; % Reordering the Matrix
E1(i,1) = val(:,1); % Eigen Value 1
E2(i,1) = val(:,2); % Eigen value 2
ii=ii+1;
ES1(:,1) = real(E1(:,1));
ES2(:,1) = real(E2(:,1));
ephi1(:,1) = imag(E1(:,1));
ephi2(:,1) = imag(E2(:,1));
end
%% From eigen values separate real and imaginary part.
% (Real part: Transmission coffecient, Imaginary part: Phase)
a = abs(ES1);
b = abs(ES2);
c = ephi1;
d = ephi2;
T2 = table(a,b,c,d)
figure
plot(freq,a) % Plot of freq vs real eigen value 1 and 2
plot(freq,b)
ylim([0 1])
plot(freq,ephi1,freq,ephi2) % Plot of freq vs imag eigen value 1 and 2
ylim([-0.6 0.6]) eigen values MATLAB Answers — New Questions