plot(skin friction)
skinfriction()
function skinfriction
Nt=0.5; Nb=0.5; Le=2; Pr=1; alpha=1.5; s=1; A=3;
%% solution in structure form
%First solution
sol = bvpinit(linspace(0,6,10), [0 0 0 0 0 0 0]);
sol1 = bvp4c(@bvpexam2, @bcexam2, sol);
x1 = sol1.x;
y1 = sol1.y;
% Second solution
opts = bvpset(‘stats’,’off’,’RelTol’,1e-10);
sol = bvpinit(linspace(0,5,10), [-1 0 0 0 0 0 0]);
sol2 = bvp4c(@bvpexam2, @bcexam2_dual, sol,opts);
x2 = sol2.x;
y2 = sol2.y;
% Plot both solutions
plot(x1,y1(3,:),’-‘); hold on
plot(x2,y2(3,:),’–‘);
xlabel(‘eta’)
ylabel(‘f`(eta)’)
result1 = A^(-1/2)*y1(3,1)
result2 = A^(-1/2)*y2(3,1)
%%residual of bcs
function res = bcexam2(y0, yinf)
res= [y0(1)-s; y0(2)-alpha; y0(4)-1; y0(6)-1; yinf(2); yinf(4);yinf(6)];
end
function res = bcexam2_dual(y0, yinf)
res= [y0(1)-s; y0(2)-alpha; y0(4)-1; y0(6)-1; yinf(2); yinf(4);yinf(6)];
end
%% first order odes
function ysol = bvpexam2(x,y)
yy1 = -(A*y(1)*y(3)-A*(y(2))^2)-y(2)-(x/2)*y(3);
yy2 = -Pr*(A*y(1)*y(5)+(x/2)*y(5)+Nb*y(5)*y(7)+Nt*(y(5))^2);
yy3 = (-Le*(A*(y(1)*y(7)+(x/2)*y(7)))-(Nt/Nb)*( -Pr*(A*y(1)*y(5)+Nb*y(5)*y(7)+Nt*(y(5))^2)));
ysol = [y(2); y(3); yy1;y(5);yy2;y(7);yy3];
end
end
please help to plot this graph using the above codeskinfriction()
function skinfriction
Nt=0.5; Nb=0.5; Le=2; Pr=1; alpha=1.5; s=1; A=3;
%% solution in structure form
%First solution
sol = bvpinit(linspace(0,6,10), [0 0 0 0 0 0 0]);
sol1 = bvp4c(@bvpexam2, @bcexam2, sol);
x1 = sol1.x;
y1 = sol1.y;
% Second solution
opts = bvpset(‘stats’,’off’,’RelTol’,1e-10);
sol = bvpinit(linspace(0,5,10), [-1 0 0 0 0 0 0]);
sol2 = bvp4c(@bvpexam2, @bcexam2_dual, sol,opts);
x2 = sol2.x;
y2 = sol2.y;
% Plot both solutions
plot(x1,y1(3,:),’-‘); hold on
plot(x2,y2(3,:),’–‘);
xlabel(‘eta’)
ylabel(‘f`(eta)’)
result1 = A^(-1/2)*y1(3,1)
result2 = A^(-1/2)*y2(3,1)
%%residual of bcs
function res = bcexam2(y0, yinf)
res= [y0(1)-s; y0(2)-alpha; y0(4)-1; y0(6)-1; yinf(2); yinf(4);yinf(6)];
end
function res = bcexam2_dual(y0, yinf)
res= [y0(1)-s; y0(2)-alpha; y0(4)-1; y0(6)-1; yinf(2); yinf(4);yinf(6)];
end
%% first order odes
function ysol = bvpexam2(x,y)
yy1 = -(A*y(1)*y(3)-A*(y(2))^2)-y(2)-(x/2)*y(3);
yy2 = -Pr*(A*y(1)*y(5)+(x/2)*y(5)+Nb*y(5)*y(7)+Nt*(y(5))^2);
yy3 = (-Le*(A*(y(1)*y(7)+(x/2)*y(7)))-(Nt/Nb)*( -Pr*(A*y(1)*y(5)+Nb*y(5)*y(7)+Nt*(y(5))^2)));
ysol = [y(2); y(3); yy1;y(5);yy2;y(7);yy3];
end
end
please help to plot this graph using the above code skinfriction()
function skinfriction
Nt=0.5; Nb=0.5; Le=2; Pr=1; alpha=1.5; s=1; A=3;
%% solution in structure form
%First solution
sol = bvpinit(linspace(0,6,10), [0 0 0 0 0 0 0]);
sol1 = bvp4c(@bvpexam2, @bcexam2, sol);
x1 = sol1.x;
y1 = sol1.y;
% Second solution
opts = bvpset(‘stats’,’off’,’RelTol’,1e-10);
sol = bvpinit(linspace(0,5,10), [-1 0 0 0 0 0 0]);
sol2 = bvp4c(@bvpexam2, @bcexam2_dual, sol,opts);
x2 = sol2.x;
y2 = sol2.y;
% Plot both solutions
plot(x1,y1(3,:),’-‘); hold on
plot(x2,y2(3,:),’–‘);
xlabel(‘eta’)
ylabel(‘f`(eta)’)
result1 = A^(-1/2)*y1(3,1)
result2 = A^(-1/2)*y2(3,1)
%%residual of bcs
function res = bcexam2(y0, yinf)
res= [y0(1)-s; y0(2)-alpha; y0(4)-1; y0(6)-1; yinf(2); yinf(4);yinf(6)];
end
function res = bcexam2_dual(y0, yinf)
res= [y0(1)-s; y0(2)-alpha; y0(4)-1; y0(6)-1; yinf(2); yinf(4);yinf(6)];
end
%% first order odes
function ysol = bvpexam2(x,y)
yy1 = -(A*y(1)*y(3)-A*(y(2))^2)-y(2)-(x/2)*y(3);
yy2 = -Pr*(A*y(1)*y(5)+(x/2)*y(5)+Nb*y(5)*y(7)+Nt*(y(5))^2);
yy3 = (-Le*(A*(y(1)*y(7)+(x/2)*y(7)))-(Nt/Nb)*( -Pr*(A*y(1)*y(5)+Nb*y(5)*y(7)+Nt*(y(5))^2)));
ysol = [y(2); y(3); yy1;y(5);yy2;y(7);yy3];
end
end
please help to plot this graph using the above code matlab MATLAB Answers — New Questions