Email: helpdesk@telkomuniversity.ac.id

This Portal for internal use only!

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • Visual Paradigm
  • IBM
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Windows
      • Office
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Categories
  • Microsoft
    • Microsoft Apps
    • Office
    • Operating System
    • VLS
    • Developer Tools
    • Productivity Tools
    • Database
    • AI + Machine Learning
    • Middleware System
    • Learning Services
    • Analytics
    • Networking
    • Compute
    • Security
    • Internet Of Things
  • Adobe
  • Matlab
  • Google
  • Visual Paradigm
  • WordPress
    • Plugin WP
    • Themes WP
  • Opensource
  • Others
More Categories Less Categories
  • Get Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • My Account
    • Download
    • Cart
    • Checkout
    • Login
  • About Us
    • Contact
    • Forum
    • Frequently Questions
    • Privacy Policy
  • Forum
    • News
      • Category
      • News Tag

iconTicket Service Desk

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • Visual Paradigm
  • IBM
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Windows
      • Office
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Menu
  • Home
    • Download Application Package Repository Telkom University
    • Application Package Repository Telkom University
    • Download Official License Telkom University
    • Download Installer Application Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • All Pack
    • Microsoft
      • Operating System
      • Productivity Tools
      • Developer Tools
      • Database
      • AI + Machine Learning
      • Middleware System
      • Networking
      • Compute
      • Security
      • Analytics
      • Internet Of Things
      • Learning Services
    • Microsoft Apps
      • VLS
    • Adobe
    • Matlab
    • WordPress
      • Themes WP
      • Plugin WP
    • Google
    • Opensource
    • Others
  • My account
    • Download
    • Get Pack
    • Cart
    • Checkout
  • News
    • Category
    • News Tag
  • Forum
  • About Us
    • Privacy Policy
    • Frequently Questions
    • Contact
Home/Matlab/Trying to use audiorecorder for impulse response testing in a for loop

Trying to use audiorecorder for impulse response testing in a for loop

PuTI / 2025-01-28
Trying to use audiorecorder for impulse response testing in a for loop
Matlab News

Hi everyone,

I’m trying to test the impulse response of a microphone that i have attached to a rotary device connected to an arduino board. Basically trying to automate getting the impulse response at different angles. Thing is, I can’t get the audiorecorder function to work properly within the for loop. It only gives me the impulse response for the final iteration. The rest has no values.

Goal is to play a white noise, record the data from mic using audiorecorder, do my ffts and iffts for impulse response, rotate by a certain angle and repeat the process.

My code is below. Any help would be greatly appreciated because I’m at a complete standstill on what to do here.

close all
clear all

% Parameters
fs = 44100; % Sampling frequency
dur = 30; % Duration of recording in seconds
dt = 1/fs; % Time step

% Create time vector for plotting
time = 0:dt:dur-dt;

% Generate white noise for the entire duration
noise=randn(dur*fs,1);
ramp_up = 0:0.01:1;
ramp_up=ramp_up’;
ramp_down= 1:-0.01:0;
ramp_down=ramp_down’;
noise(1:length(ramp_up))=noise(1:length(ramp_up)).*ramp_up;
noise(end-length(ramp_down)+1:end)=noise(end-length(ramp_down)+1:end).*ramp_down;
noise=noise./max(noise);

recObj = audiorecorder(fs, 24, 2, 2);

%Arduino Setup
clear dcm sm shield a;
a = arduino(‘COM5′,’Uno’,’Libraries’,’AdafruitMotorShieldV2′);
shield = addon(a,’AdafruitMotorShieldV2′);
addrs = scanI2CBus(a,0);
sm = stepper(shield,2,200);
sm.RPM = 3;

Angle = 45; %Rotation Angle
n_rot = 180 / Angle; %Number of Rotations

IM_L=1000; % Truncated impulse response length in number of data points
LS_IR=zeros(n_rot,IM_L);
nfft = 96000; % FFT size
df = fs / nfft; % Frequency resolution
faxis = df:df:nfft*df; % Frequency axis
nFreq=length(faxis);

%Initializing data storage
nSamples = fs * dur;
allData_mic = zeros(nSamples, n_rot);
allData_spk = zeros(nSamples,n_rot);
allIR = zeros(nFreq, n_rot);
allIR_trunc=zeros(IM_L, n_rot);
allfrf=zeros(nFreq/2,n_rot);
allfrf_trunc=zeros(IM_L,n_rot);

%for i = 1:1
for i = 1:n_rot+1
%recording
sound(noise, fs);
% Record two-channel microphone input (24-bit, 2 channels)

recordblocking(recObj, dur); % Record for specified duration

% Get recorded data (two channels)
recordedData = getaudiodata(recObj);

spkinput = recordedData(:, 1); % First channel: Speaker
microphoneInput = recordedData(:, 2); % Second channel: Microphone

microphoneInput = microphoneInput./0.0462;%Left Ear (Fixed)
%microphoneInput = microphoneInput./0.0630;%Right Ear

%% FFT

nav = floor(length(spkinput) / nfft) * 2 – 1; % Number of averages

% Initialize accumulators for power spectral densities and cross-spectral density
G1 = zeros(nfft, 1); % Power Spectral Density of Speaker
G2 = zeros(nfft, 1); % Power Spectral Density of Microphone
G12 = zeros(nfft, 1); % Cross-Spectral Density between Microphone 1 and Microphone 2
G21 = zeros(nfft, 1);
% Loop through the signal with 50% overlap and apply FFT
for i = 1:nav
p1 = 1 + nfft * (i – 1) * 0.5; % Start index for the current block
p2 = p1 + nfft-1; % End index for the current block
% Apply Hann window to the blocks
win=hann(length(spkinput(p1:p2))); % Create a Hann window for the current segment
% Applying windows to blocks
spk_win = win.*spkinput(p1:p2); % Mic1 input
mic_win = win.*microphoneInput(p1:p2); % Mic2 input
% FFT of the windowed blocks
Xf = fft(spk_win, nfft); % FFT of Mic1
Yf = fft(mic_win, nfft); % FFT of Mic2
G1 = G1 + Xf .* conj(Xf); % PSD of Speaker input
G2 = G2 + Yf .* conj(Yf); % PSD of Microphone recording
G12 = G12 + Xf .* conj(Yf); % CSD between Microphone and Speaker
G21=G21 + Yf.*conj(Xf);
end

G1 = 2*G1(1:nfft/2)./(nfft*nfft*nav);
G2 = 2*G2(1:nfft/2)./(nfft*nfft*nav);
G12 = 2*G12(1:nfft/2)./(nfft*nfft*nav);
G21 = 2*G21(1:nfft/2)./(nfft*nfft*nav);

% Compute Coherence Function
coherence = abs(G21).^2 ./ (G1 .* G2);

% Compute Frequency Response Function (FRF)
frf = G2./G12; % FRF
magdB=20*log10(abs(frf));

%% Impulse Response
IR = ifft(frf,nfft);
IR_trunc=IR(1:IM_L);

%impulse_time = (0:nfft-1) * dt;
% n_samp=length(frf);
% impulse_time= 0:dt:(length(microphoneInput1)-1)*dt;

%store everything to the two vectors made above
allData_spk(:, i) = spkinput;
allData_mic(:, i) = microphoneInput;
allIR (:,i) = IR;
allIR_trunc (:,i)= IR_trunc;
allfrf (:,i) = frf;

filenameOut = sprintf(‘HeadTesting_Baseline_27Jan_%ddeg.mat’, ((i-1)*5));

%Movement———–
% – moves it to the left (counterclockwise) (standing behind it)
% + moves it to the right (clockwise) (stangind behind it)
if i~=n_rot+1
move(sm, +50*Angle);
end

end

clear dcm sm shield a;Hi everyone,

I’m trying to test the impulse response of a microphone that i have attached to a rotary device connected to an arduino board. Basically trying to automate getting the impulse response at different angles. Thing is, I can’t get the audiorecorder function to work properly within the for loop. It only gives me the impulse response for the final iteration. The rest has no values.

Goal is to play a white noise, record the data from mic using audiorecorder, do my ffts and iffts for impulse response, rotate by a certain angle and repeat the process.

My code is below. Any help would be greatly appreciated because I’m at a complete standstill on what to do here.

close all
clear all

% Parameters
fs = 44100; % Sampling frequency
dur = 30; % Duration of recording in seconds
dt = 1/fs; % Time step

% Create time vector for plotting
time = 0:dt:dur-dt;

% Generate white noise for the entire duration
noise=randn(dur*fs,1);
ramp_up = 0:0.01:1;
ramp_up=ramp_up’;
ramp_down= 1:-0.01:0;
ramp_down=ramp_down’;
noise(1:length(ramp_up))=noise(1:length(ramp_up)).*ramp_up;
noise(end-length(ramp_down)+1:end)=noise(end-length(ramp_down)+1:end).*ramp_down;
noise=noise./max(noise);

recObj = audiorecorder(fs, 24, 2, 2);

%Arduino Setup
clear dcm sm shield a;
a = arduino(‘COM5′,’Uno’,’Libraries’,’AdafruitMotorShieldV2′);
shield = addon(a,’AdafruitMotorShieldV2′);
addrs = scanI2CBus(a,0);
sm = stepper(shield,2,200);
sm.RPM = 3;

Angle = 45; %Rotation Angle
n_rot = 180 / Angle; %Number of Rotations

IM_L=1000; % Truncated impulse response length in number of data points
LS_IR=zeros(n_rot,IM_L);
nfft = 96000; % FFT size
df = fs / nfft; % Frequency resolution
faxis = df:df:nfft*df; % Frequency axis
nFreq=length(faxis);

%Initializing data storage
nSamples = fs * dur;
allData_mic = zeros(nSamples, n_rot);
allData_spk = zeros(nSamples,n_rot);
allIR = zeros(nFreq, n_rot);
allIR_trunc=zeros(IM_L, n_rot);
allfrf=zeros(nFreq/2,n_rot);
allfrf_trunc=zeros(IM_L,n_rot);

%for i = 1:1
for i = 1:n_rot+1
%recording
sound(noise, fs);
% Record two-channel microphone input (24-bit, 2 channels)

recordblocking(recObj, dur); % Record for specified duration

% Get recorded data (two channels)
recordedData = getaudiodata(recObj);

spkinput = recordedData(:, 1); % First channel: Speaker
microphoneInput = recordedData(:, 2); % Second channel: Microphone

microphoneInput = microphoneInput./0.0462;%Left Ear (Fixed)
%microphoneInput = microphoneInput./0.0630;%Right Ear

%% FFT

nav = floor(length(spkinput) / nfft) * 2 – 1; % Number of averages

% Initialize accumulators for power spectral densities and cross-spectral density
G1 = zeros(nfft, 1); % Power Spectral Density of Speaker
G2 = zeros(nfft, 1); % Power Spectral Density of Microphone
G12 = zeros(nfft, 1); % Cross-Spectral Density between Microphone 1 and Microphone 2
G21 = zeros(nfft, 1);
% Loop through the signal with 50% overlap and apply FFT
for i = 1:nav
p1 = 1 + nfft * (i – 1) * 0.5; % Start index for the current block
p2 = p1 + nfft-1; % End index for the current block
% Apply Hann window to the blocks
win=hann(length(spkinput(p1:p2))); % Create a Hann window for the current segment
% Applying windows to blocks
spk_win = win.*spkinput(p1:p2); % Mic1 input
mic_win = win.*microphoneInput(p1:p2); % Mic2 input
% FFT of the windowed blocks
Xf = fft(spk_win, nfft); % FFT of Mic1
Yf = fft(mic_win, nfft); % FFT of Mic2
G1 = G1 + Xf .* conj(Xf); % PSD of Speaker input
G2 = G2 + Yf .* conj(Yf); % PSD of Microphone recording
G12 = G12 + Xf .* conj(Yf); % CSD between Microphone and Speaker
G21=G21 + Yf.*conj(Xf);
end

G1 = 2*G1(1:nfft/2)./(nfft*nfft*nav);
G2 = 2*G2(1:nfft/2)./(nfft*nfft*nav);
G12 = 2*G12(1:nfft/2)./(nfft*nfft*nav);
G21 = 2*G21(1:nfft/2)./(nfft*nfft*nav);

% Compute Coherence Function
coherence = abs(G21).^2 ./ (G1 .* G2);

% Compute Frequency Response Function (FRF)
frf = G2./G12; % FRF
magdB=20*log10(abs(frf));

%% Impulse Response
IR = ifft(frf,nfft);
IR_trunc=IR(1:IM_L);

%impulse_time = (0:nfft-1) * dt;
% n_samp=length(frf);
% impulse_time= 0:dt:(length(microphoneInput1)-1)*dt;

%store everything to the two vectors made above
allData_spk(:, i) = spkinput;
allData_mic(:, i) = microphoneInput;
allIR (:,i) = IR;
allIR_trunc (:,i)= IR_trunc;
allfrf (:,i) = frf;

filenameOut = sprintf(‘HeadTesting_Baseline_27Jan_%ddeg.mat’, ((i-1)*5));

%Movement———–
% – moves it to the left (counterclockwise) (standing behind it)
% + moves it to the right (clockwise) (stangind behind it)
if i~=n_rot+1
move(sm, +50*Angle);
end

end

clear dcm sm shield a; Hi everyone,

I’m trying to test the impulse response of a microphone that i have attached to a rotary device connected to an arduino board. Basically trying to automate getting the impulse response at different angles. Thing is, I can’t get the audiorecorder function to work properly within the for loop. It only gives me the impulse response for the final iteration. The rest has no values.

Goal is to play a white noise, record the data from mic using audiorecorder, do my ffts and iffts for impulse response, rotate by a certain angle and repeat the process.

My code is below. Any help would be greatly appreciated because I’m at a complete standstill on what to do here.

close all
clear all

% Parameters
fs = 44100; % Sampling frequency
dur = 30; % Duration of recording in seconds
dt = 1/fs; % Time step

% Create time vector for plotting
time = 0:dt:dur-dt;

% Generate white noise for the entire duration
noise=randn(dur*fs,1);
ramp_up = 0:0.01:1;
ramp_up=ramp_up’;
ramp_down= 1:-0.01:0;
ramp_down=ramp_down’;
noise(1:length(ramp_up))=noise(1:length(ramp_up)).*ramp_up;
noise(end-length(ramp_down)+1:end)=noise(end-length(ramp_down)+1:end).*ramp_down;
noise=noise./max(noise);

recObj = audiorecorder(fs, 24, 2, 2);

%Arduino Setup
clear dcm sm shield a;
a = arduino(‘COM5′,’Uno’,’Libraries’,’AdafruitMotorShieldV2′);
shield = addon(a,’AdafruitMotorShieldV2′);
addrs = scanI2CBus(a,0);
sm = stepper(shield,2,200);
sm.RPM = 3;

Angle = 45; %Rotation Angle
n_rot = 180 / Angle; %Number of Rotations

IM_L=1000; % Truncated impulse response length in number of data points
LS_IR=zeros(n_rot,IM_L);
nfft = 96000; % FFT size
df = fs / nfft; % Frequency resolution
faxis = df:df:nfft*df; % Frequency axis
nFreq=length(faxis);

%Initializing data storage
nSamples = fs * dur;
allData_mic = zeros(nSamples, n_rot);
allData_spk = zeros(nSamples,n_rot);
allIR = zeros(nFreq, n_rot);
allIR_trunc=zeros(IM_L, n_rot);
allfrf=zeros(nFreq/2,n_rot);
allfrf_trunc=zeros(IM_L,n_rot);

%for i = 1:1
for i = 1:n_rot+1
%recording
sound(noise, fs);
% Record two-channel microphone input (24-bit, 2 channels)

recordblocking(recObj, dur); % Record for specified duration

% Get recorded data (two channels)
recordedData = getaudiodata(recObj);

spkinput = recordedData(:, 1); % First channel: Speaker
microphoneInput = recordedData(:, 2); % Second channel: Microphone

microphoneInput = microphoneInput./0.0462;%Left Ear (Fixed)
%microphoneInput = microphoneInput./0.0630;%Right Ear

%% FFT

nav = floor(length(spkinput) / nfft) * 2 – 1; % Number of averages

% Initialize accumulators for power spectral densities and cross-spectral density
G1 = zeros(nfft, 1); % Power Spectral Density of Speaker
G2 = zeros(nfft, 1); % Power Spectral Density of Microphone
G12 = zeros(nfft, 1); % Cross-Spectral Density between Microphone 1 and Microphone 2
G21 = zeros(nfft, 1);
% Loop through the signal with 50% overlap and apply FFT
for i = 1:nav
p1 = 1 + nfft * (i – 1) * 0.5; % Start index for the current block
p2 = p1 + nfft-1; % End index for the current block
% Apply Hann window to the blocks
win=hann(length(spkinput(p1:p2))); % Create a Hann window for the current segment
% Applying windows to blocks
spk_win = win.*spkinput(p1:p2); % Mic1 input
mic_win = win.*microphoneInput(p1:p2); % Mic2 input
% FFT of the windowed blocks
Xf = fft(spk_win, nfft); % FFT of Mic1
Yf = fft(mic_win, nfft); % FFT of Mic2
G1 = G1 + Xf .* conj(Xf); % PSD of Speaker input
G2 = G2 + Yf .* conj(Yf); % PSD of Microphone recording
G12 = G12 + Xf .* conj(Yf); % CSD between Microphone and Speaker
G21=G21 + Yf.*conj(Xf);
end

G1 = 2*G1(1:nfft/2)./(nfft*nfft*nav);
G2 = 2*G2(1:nfft/2)./(nfft*nfft*nav);
G12 = 2*G12(1:nfft/2)./(nfft*nfft*nav);
G21 = 2*G21(1:nfft/2)./(nfft*nfft*nav);

% Compute Coherence Function
coherence = abs(G21).^2 ./ (G1 .* G2);

% Compute Frequency Response Function (FRF)
frf = G2./G12; % FRF
magdB=20*log10(abs(frf));

%% Impulse Response
IR = ifft(frf,nfft);
IR_trunc=IR(1:IM_L);

%impulse_time = (0:nfft-1) * dt;
% n_samp=length(frf);
% impulse_time= 0:dt:(length(microphoneInput1)-1)*dt;

%store everything to the two vectors made above
allData_spk(:, i) = spkinput;
allData_mic(:, i) = microphoneInput;
allIR (:,i) = IR;
allIR_trunc (:,i)= IR_trunc;
allfrf (:,i) = frf;

filenameOut = sprintf(‘HeadTesting_Baseline_27Jan_%ddeg.mat’, ((i-1)*5));

%Movement———–
% – moves it to the left (counterclockwise) (standing behind it)
% + moves it to the right (clockwise) (stangind behind it)
if i~=n_rot+1
move(sm, +50*Angle);
end

end

clear dcm sm shield a; audiorecorder, signal processing, audio, arduino, for loop MATLAB Answers — New Questions

​

Tags: matlab

Share this!

Related posts

test one two three four
2025-05-20

test one two three four

Is it possible to make this tiny loop faster?
2025-05-19

Is it possible to make this tiny loop faster?

Solar Wind Battery Hybrid Integration
2025-05-19

Solar Wind Battery Hybrid Integration

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Search

Categories

  • Matlab
  • Microsoft
  • News
  • Other
Application Package Repository Telkom University

Tags

matlab microsoft opensources
Application Package Download License

Application Package Download License

Adobe
Google for Education
IBM
Matlab
Microsoft
Wordpress
Visual Paradigm
Opensource

Sign Up For Newsletters

Be the First to Know. Sign up for newsletter today

Application Package Repository Telkom University

Portal Application Package Repository Telkom University, for internal use only, empower civitas academica in study and research.

Information

  • Telkom University
  • About Us
  • Contact
  • Forum Discussion
  • FAQ
  • Helpdesk Ticket

Contact Us

  • Ask: Any question please read FAQ
  • Mail: helpdesk@telkomuniversity.ac.id
  • Call: +62 823-1994-9941
  • WA: +62 823-1994-9943
  • Site: Gedung Panambulai. Jl. Telekomunikasi

Copyright © Telkom University. All Rights Reserved. ch

  • FAQ
  • Privacy Policy
  • Term

This Application Package for internal Telkom University only (students and employee). Chiers... Dismiss