Email: [email protected]

This Portal for internal use only!

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • IBM
  • Visual Paradigm
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Office
      • Windows
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Categories
  • Microsoft
    • Microsoft Apps
    • Office
    • Operating System
    • VLS
    • Developer Tools
    • Productivity Tools
    • Database
    • AI + Machine Learning
    • Middleware System
    • Learning Services
    • Analytics
    • Networking
    • Compute
    • Security
    • Internet Of Things
  • Adobe
  • Matlab
  • Google
  • Visual Paradigm
  • WordPress
    • Plugin WP
    • Themes WP
  • Opensource
  • Others
More Categories Less Categories
  • Get Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • My Account
    • Download
    • Cart
    • Checkout
    • Login
  • About Us
    • Contact
    • Forum
    • Frequently Questions
    • Privacy Policy
  • Forum
    • News
      • Category
      • News Tag

iconTicket Service Desk

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • IBM
  • Visual Paradigm
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Office
      • Windows
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Menu
  • Home
    • Download Application Package Repository Telkom University
    • Application Package Repository Telkom University
    • Download Official License Telkom University
    • Download Installer Application Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • All Pack
    • Microsoft
      • Operating System
      • Productivity Tools
      • Developer Tools
      • Database
      • AI + Machine Learning
      • Middleware System
      • Networking
      • Compute
      • Security
      • Analytics
      • Internet Of Things
      • Learning Services
    • Microsoft Apps
      • VLS
    • Adobe
    • Matlab
    • WordPress
      • Themes WP
      • Plugin WP
    • Google
    • Opensource
    • Others
  • My account
    • Download
    • Get Pack
    • Cart
    • Checkout
  • News
    • Category
    • News Tag
  • Forum
  • About Us
    • Privacy Policy
    • Frequently Questions
    • Contact
Home/Matlab/Why numerical solutions is not consistent with the exact solutions?

Why numerical solutions is not consistent with the exact solutions?

PuTI / 2025-04-06
Why numerical solutions is not consistent with the exact solutions?
Matlab News

Why numerical solutions is not consistent with the exact solutions? Also the error is too large. How to modify the code to get consistent results? See the attached image for the equation of motions and their exact solutions.
clear; clc;
tic;
c1 = 0; % real constant
c2 = 0; % real constant
a = 1; % real constant
b=0.1; % two values b=0.1, b=0.01
lambda = -1./(2*(1 + 1i)); % complex or imaginary
N = 1000;
X = linspace(-10, 10, N);
T = linspace(0, 10, N);

% Calculate initial conditions
[x, ~] = meshgrid(X, 0); % t = 0 for initial conditions
%psi_init = A * exp(-1i * lambda * x);
%phi_init = B * exp(1i * lambda * x);
nq_init = -a*(b.^5*(1+(0 + c2).^2).^2 – 8*a*(0+c2).*(x+c1) – 4*a*b.^4*(0+c2).*(1+(0+c2).^2).*(x+c1) – 4*a*b.^2*(0+c2).*(x+c1).*(3+(0+c2).^2 + a.^2*(x+c1).^2) + b*(-3+(0+c2).^4 + 6*a.^2*(x+c1).^2 + a.^4*(x+c1).^4 + 2*(0+c2).^2.*(3 + a.^2*(x+c1).^2)) + 2*b.^3*(-1 + (0+c2).^4 + a.^2*(x+c1).^2 + (0+c2).^2*(4 + 3*a.^2*(x+c1).^2)));
dq_init = 1 + (0 + c2).^2 + b.^2 + (b*(0 + c2) + a*(x + c1)).^2;
q_init = (nq_init ./ (dq_init .^ 2));
ns_init = -(-3 + (0 + c2).^2 + b.^2*(-3 + (0 + c2).^2) + 4*1i*a*(x+c1) – 2*a*b*(0 + c2).*(x+c1) + a.^2*(x+c1).^2).*(exp(1i*(a*x + b*0)));
s_init = ns_init ./ dq_init;

initial_conditions = [q_init(:); s_init(:)];

t_span = T;

% Solve the differential equation numerically
options = odeset(‘RelTol’, 1e-4, ‘AbsTol’, 1e-8);
[t, u] = ode45(@(t, u) dydt(t, u, N), t_span, initial_conditions, options);

% Extract q and s from the solution
q = reshape(u(:, 1:N), [length(t), N]);
s = reshape(u(:, N+1:end), [length(t), N]);

% Calculate the exact solution over the mesh grid
[x, t] = meshgrid(X, T);
nq = -a*(b.^5*(1+(t + c2).^2).^2 – 8*a*(t+c2).*(x+c1) – 4*a*b.^4*(t+c2).*(1+(t+c2).^2).*(x+c1) – 4*a*b.^2*(t+c2).*(x+c1).*(3+(t+c2).^2 + a.^2*(x+c1).^2) + b*(-3+(t+c2).^4 + 6*a.^2*(x+c1).^2 + a.^4*(x+c1).^4 + 2*(t+c2).^2.*(3 + a.^2*(x+c1).^2)) + 2*b.^3*(-1 + (t+c2).^4 + a.^2*(x+c1).^2 + (t+c2).^2*(4 + 3*a.^2*(x+c1).^2)));
dq = 1 + (t + c2).^2 + b.^2 + (b*(t + c2) + a*(x + c1)).^2;
ns = -(-3 + (t + c2).^2 + b.^2*(-3 + (t + c2).^2) + 4*1i*a*(x+c1) – 2*a*b*(t + c2).*(x+c1) + a.^2*(x+c1).^2).*(exp(1i*(a*x + b*0)));
exact_q = (nq ./ (dq .^ 2));
exact_s = ns ./ dq;

% Compute the error
error_q = abs(q’ – exact_q);
error_s = abs(s’ – exact_s);

% Plotting the numerical solution
figure;
subplot(2, 1, 1);
surf(t, x, abs(q’));
title(‘Numerical Solution for |q_{n+1} – q_n|’);
xlabel(‘t’);
ylabel(‘x’);
zlabel(‘|q_{n+1} – q_n|’);
shading interp;

subplot(2, 1, 2);
surf(t, x, abs(s’));
title(‘Numerical Solution for |s_{n+1} – s_n|’);
xlabel(‘t’);
ylabel(‘x’);
zlabel(‘|s_{n+1} – s_n|’);
shading interp;

% 3D surface plot for exact solution
figure;
subplot(2, 1, 1);
surf(t, x, abs(exact_q’));
title(‘Exact Solution for |q_{n+1} – q_n|’);
xlabel(‘t’);
ylabel(‘x’);
zlabel(‘|q_{n+1} – q_n|’);
shading interp;

subplot(2, 1, 2);
surf(t, x, abs(exact_s’));
title(‘Exact Solution for |s_{n+1} – s_n|’);
xlabel(‘t’);
ylabel(‘x’);
zlabel(‘|s_{n+1} – s_n|’);
shading interp;

% Plot the error
figure;
subplot(2, 1, 1);
surf(t, x, error_q’);
title(‘Error for |q_{n+1} – q_n|’);
xlabel(‘t’);
ylabel(‘x’);
zlabel(‘Error’);
shading interp;

subplot(2, 1, 2);
surf(t, x, error_s’);
title(‘Error for |s_{n+1} – s_n|’);
xlabel(‘t’);
ylabel(‘x’);
zlabel(‘Error’);
shading interp;

% 2D error plot at specific times
figure;
times_to_plot = [0, 5, 10]; % Example times to plot error
for i = 1:length(times_to_plot)
time_idx = find(t_span >= times_to_plot(i), 1);
subplot(length(times_to_plot), 1, i);
plot(X, error_q(:, time_idx), ‘r’, X, error_s(:, time_idx), ‘b’);
title([‘Error at t = ‘, num2str(times_to_plot(i))]);
xlabel(‘x’);
ylabel(‘Error’);
legend(‘|q_{n+1} – q_n| Error’, ‘|s_{n+1} – s_n| Error’);
end

% Generate error table for fixed times from 0 to 10 in increments of 0.5
fixed_times = 0:0.5:10;
error_table_q = zeros(length(fixed_times), 1);
error_table_s = zeros(length(fixed_times), 1);

for i = 1:length(fixed_times)
time_idx = find(t_span >= fixed_times(i), 1);
error_table_q(i) = mean(error_q(:, time_idx));
error_table_s(i) = mean(error_s(:, time_idx));
end

% Display the error table
error_table = table(fixed_times’, error_table_q, error_table_s, …
‘VariableNames’, {‘Time’, ‘Error_q’, ‘Error_s’});
disp(error_table);

toc;

function dydt = dydt(~, u, N)
dydt = zeros(2*N, 1);
q = u(1:N);
s = u(N+1:2*N);

% Handle boundary conditions
for n = 3:N-2
dydt(n) = 1/2 * s(n) * conj(s(n)) – 1/2 * s(n+1) * conj(s(n+1));
dydt(N+n) = 1/2 * (q(n+1) – q(n)) * (s(n+1) – s(n));
end
endWhy numerical solutions is not consistent with the exact solutions? Also the error is too large. How to modify the code to get consistent results? See the attached image for the equation of motions and their exact solutions.
clear; clc;
tic;
c1 = 0; % real constant
c2 = 0; % real constant
a = 1; % real constant
b=0.1; % two values b=0.1, b=0.01
lambda = -1./(2*(1 + 1i)); % complex or imaginary
N = 1000;
X = linspace(-10, 10, N);
T = linspace(0, 10, N);

% Calculate initial conditions
[x, ~] = meshgrid(X, 0); % t = 0 for initial conditions
%psi_init = A * exp(-1i * lambda * x);
%phi_init = B * exp(1i * lambda * x);
nq_init = -a*(b.^5*(1+(0 + c2).^2).^2 – 8*a*(0+c2).*(x+c1) – 4*a*b.^4*(0+c2).*(1+(0+c2).^2).*(x+c1) – 4*a*b.^2*(0+c2).*(x+c1).*(3+(0+c2).^2 + a.^2*(x+c1).^2) + b*(-3+(0+c2).^4 + 6*a.^2*(x+c1).^2 + a.^4*(x+c1).^4 + 2*(0+c2).^2.*(3 + a.^2*(x+c1).^2)) + 2*b.^3*(-1 + (0+c2).^4 + a.^2*(x+c1).^2 + (0+c2).^2*(4 + 3*a.^2*(x+c1).^2)));
dq_init = 1 + (0 + c2).^2 + b.^2 + (b*(0 + c2) + a*(x + c1)).^2;
q_init = (nq_init ./ (dq_init .^ 2));
ns_init = -(-3 + (0 + c2).^2 + b.^2*(-3 + (0 + c2).^2) + 4*1i*a*(x+c1) – 2*a*b*(0 + c2).*(x+c1) + a.^2*(x+c1).^2).*(exp(1i*(a*x + b*0)));
s_init = ns_init ./ dq_init;

initial_conditions = [q_init(:); s_init(:)];

t_span = T;

% Solve the differential equation numerically
options = odeset(‘RelTol’, 1e-4, ‘AbsTol’, 1e-8);
[t, u] = ode45(@(t, u) dydt(t, u, N), t_span, initial_conditions, options);

% Extract q and s from the solution
q = reshape(u(:, 1:N), [length(t), N]);
s = reshape(u(:, N+1:end), [length(t), N]);

% Calculate the exact solution over the mesh grid
[x, t] = meshgrid(X, T);
nq = -a*(b.^5*(1+(t + c2).^2).^2 – 8*a*(t+c2).*(x+c1) – 4*a*b.^4*(t+c2).*(1+(t+c2).^2).*(x+c1) – 4*a*b.^2*(t+c2).*(x+c1).*(3+(t+c2).^2 + a.^2*(x+c1).^2) + b*(-3+(t+c2).^4 + 6*a.^2*(x+c1).^2 + a.^4*(x+c1).^4 + 2*(t+c2).^2.*(3 + a.^2*(x+c1).^2)) + 2*b.^3*(-1 + (t+c2).^4 + a.^2*(x+c1).^2 + (t+c2).^2*(4 + 3*a.^2*(x+c1).^2)));
dq = 1 + (t + c2).^2 + b.^2 + (b*(t + c2) + a*(x + c1)).^2;
ns = -(-3 + (t + c2).^2 + b.^2*(-3 + (t + c2).^2) + 4*1i*a*(x+c1) – 2*a*b*(t + c2).*(x+c1) + a.^2*(x+c1).^2).*(exp(1i*(a*x + b*0)));
exact_q = (nq ./ (dq .^ 2));
exact_s = ns ./ dq;

% Compute the error
error_q = abs(q’ – exact_q);
error_s = abs(s’ – exact_s);

% Plotting the numerical solution
figure;
subplot(2, 1, 1);
surf(t, x, abs(q’));
title(‘Numerical Solution for |q_{n+1} – q_n|’);
xlabel(‘t’);
ylabel(‘x’);
zlabel(‘|q_{n+1} – q_n|’);
shading interp;

subplot(2, 1, 2);
surf(t, x, abs(s’));
title(‘Numerical Solution for |s_{n+1} – s_n|’);
xlabel(‘t’);
ylabel(‘x’);
zlabel(‘|s_{n+1} – s_n|’);
shading interp;

% 3D surface plot for exact solution
figure;
subplot(2, 1, 1);
surf(t, x, abs(exact_q’));
title(‘Exact Solution for |q_{n+1} – q_n|’);
xlabel(‘t’);
ylabel(‘x’);
zlabel(‘|q_{n+1} – q_n|’);
shading interp;

subplot(2, 1, 2);
surf(t, x, abs(exact_s’));
title(‘Exact Solution for |s_{n+1} – s_n|’);
xlabel(‘t’);
ylabel(‘x’);
zlabel(‘|s_{n+1} – s_n|’);
shading interp;

% Plot the error
figure;
subplot(2, 1, 1);
surf(t, x, error_q’);
title(‘Error for |q_{n+1} – q_n|’);
xlabel(‘t’);
ylabel(‘x’);
zlabel(‘Error’);
shading interp;

subplot(2, 1, 2);
surf(t, x, error_s’);
title(‘Error for |s_{n+1} – s_n|’);
xlabel(‘t’);
ylabel(‘x’);
zlabel(‘Error’);
shading interp;

% 2D error plot at specific times
figure;
times_to_plot = [0, 5, 10]; % Example times to plot error
for i = 1:length(times_to_plot)
time_idx = find(t_span >= times_to_plot(i), 1);
subplot(length(times_to_plot), 1, i);
plot(X, error_q(:, time_idx), ‘r’, X, error_s(:, time_idx), ‘b’);
title([‘Error at t = ‘, num2str(times_to_plot(i))]);
xlabel(‘x’);
ylabel(‘Error’);
legend(‘|q_{n+1} – q_n| Error’, ‘|s_{n+1} – s_n| Error’);
end

% Generate error table for fixed times from 0 to 10 in increments of 0.5
fixed_times = 0:0.5:10;
error_table_q = zeros(length(fixed_times), 1);
error_table_s = zeros(length(fixed_times), 1);

for i = 1:length(fixed_times)
time_idx = find(t_span >= fixed_times(i), 1);
error_table_q(i) = mean(error_q(:, time_idx));
error_table_s(i) = mean(error_s(:, time_idx));
end

% Display the error table
error_table = table(fixed_times’, error_table_q, error_table_s, …
‘VariableNames’, {‘Time’, ‘Error_q’, ‘Error_s’});
disp(error_table);

toc;

function dydt = dydt(~, u, N)
dydt = zeros(2*N, 1);
q = u(1:N);
s = u(N+1:2*N);

% Handle boundary conditions
for n = 3:N-2
dydt(n) = 1/2 * s(n) * conj(s(n)) – 1/2 * s(n+1) * conj(s(n+1));
dydt(N+n) = 1/2 * (q(n+1) – q(n)) * (s(n+1) – s(n));
end
end Why numerical solutions is not consistent with the exact solutions? Also the error is too large. How to modify the code to get consistent results? See the attached image for the equation of motions and their exact solutions.
clear; clc;
tic;
c1 = 0; % real constant
c2 = 0; % real constant
a = 1; % real constant
b=0.1; % two values b=0.1, b=0.01
lambda = -1./(2*(1 + 1i)); % complex or imaginary
N = 1000;
X = linspace(-10, 10, N);
T = linspace(0, 10, N);

% Calculate initial conditions
[x, ~] = meshgrid(X, 0); % t = 0 for initial conditions
%psi_init = A * exp(-1i * lambda * x);
%phi_init = B * exp(1i * lambda * x);
nq_init = -a*(b.^5*(1+(0 + c2).^2).^2 – 8*a*(0+c2).*(x+c1) – 4*a*b.^4*(0+c2).*(1+(0+c2).^2).*(x+c1) – 4*a*b.^2*(0+c2).*(x+c1).*(3+(0+c2).^2 + a.^2*(x+c1).^2) + b*(-3+(0+c2).^4 + 6*a.^2*(x+c1).^2 + a.^4*(x+c1).^4 + 2*(0+c2).^2.*(3 + a.^2*(x+c1).^2)) + 2*b.^3*(-1 + (0+c2).^4 + a.^2*(x+c1).^2 + (0+c2).^2*(4 + 3*a.^2*(x+c1).^2)));
dq_init = 1 + (0 + c2).^2 + b.^2 + (b*(0 + c2) + a*(x + c1)).^2;
q_init = (nq_init ./ (dq_init .^ 2));
ns_init = -(-3 + (0 + c2).^2 + b.^2*(-3 + (0 + c2).^2) + 4*1i*a*(x+c1) – 2*a*b*(0 + c2).*(x+c1) + a.^2*(x+c1).^2).*(exp(1i*(a*x + b*0)));
s_init = ns_init ./ dq_init;

initial_conditions = [q_init(:); s_init(:)];

t_span = T;

% Solve the differential equation numerically
options = odeset(‘RelTol’, 1e-4, ‘AbsTol’, 1e-8);
[t, u] = ode45(@(t, u) dydt(t, u, N), t_span, initial_conditions, options);

% Extract q and s from the solution
q = reshape(u(:, 1:N), [length(t), N]);
s = reshape(u(:, N+1:end), [length(t), N]);

% Calculate the exact solution over the mesh grid
[x, t] = meshgrid(X, T);
nq = -a*(b.^5*(1+(t + c2).^2).^2 – 8*a*(t+c2).*(x+c1) – 4*a*b.^4*(t+c2).*(1+(t+c2).^2).*(x+c1) – 4*a*b.^2*(t+c2).*(x+c1).*(3+(t+c2).^2 + a.^2*(x+c1).^2) + b*(-3+(t+c2).^4 + 6*a.^2*(x+c1).^2 + a.^4*(x+c1).^4 + 2*(t+c2).^2.*(3 + a.^2*(x+c1).^2)) + 2*b.^3*(-1 + (t+c2).^4 + a.^2*(x+c1).^2 + (t+c2).^2*(4 + 3*a.^2*(x+c1).^2)));
dq = 1 + (t + c2).^2 + b.^2 + (b*(t + c2) + a*(x + c1)).^2;
ns = -(-3 + (t + c2).^2 + b.^2*(-3 + (t + c2).^2) + 4*1i*a*(x+c1) – 2*a*b*(t + c2).*(x+c1) + a.^2*(x+c1).^2).*(exp(1i*(a*x + b*0)));
exact_q = (nq ./ (dq .^ 2));
exact_s = ns ./ dq;

% Compute the error
error_q = abs(q’ – exact_q);
error_s = abs(s’ – exact_s);

% Plotting the numerical solution
figure;
subplot(2, 1, 1);
surf(t, x, abs(q’));
title(‘Numerical Solution for |q_{n+1} – q_n|’);
xlabel(‘t’);
ylabel(‘x’);
zlabel(‘|q_{n+1} – q_n|’);
shading interp;

subplot(2, 1, 2);
surf(t, x, abs(s’));
title(‘Numerical Solution for |s_{n+1} – s_n|’);
xlabel(‘t’);
ylabel(‘x’);
zlabel(‘|s_{n+1} – s_n|’);
shading interp;

% 3D surface plot for exact solution
figure;
subplot(2, 1, 1);
surf(t, x, abs(exact_q’));
title(‘Exact Solution for |q_{n+1} – q_n|’);
xlabel(‘t’);
ylabel(‘x’);
zlabel(‘|q_{n+1} – q_n|’);
shading interp;

subplot(2, 1, 2);
surf(t, x, abs(exact_s’));
title(‘Exact Solution for |s_{n+1} – s_n|’);
xlabel(‘t’);
ylabel(‘x’);
zlabel(‘|s_{n+1} – s_n|’);
shading interp;

% Plot the error
figure;
subplot(2, 1, 1);
surf(t, x, error_q’);
title(‘Error for |q_{n+1} – q_n|’);
xlabel(‘t’);
ylabel(‘x’);
zlabel(‘Error’);
shading interp;

subplot(2, 1, 2);
surf(t, x, error_s’);
title(‘Error for |s_{n+1} – s_n|’);
xlabel(‘t’);
ylabel(‘x’);
zlabel(‘Error’);
shading interp;

% 2D error plot at specific times
figure;
times_to_plot = [0, 5, 10]; % Example times to plot error
for i = 1:length(times_to_plot)
time_idx = find(t_span >= times_to_plot(i), 1);
subplot(length(times_to_plot), 1, i);
plot(X, error_q(:, time_idx), ‘r’, X, error_s(:, time_idx), ‘b’);
title([‘Error at t = ‘, num2str(times_to_plot(i))]);
xlabel(‘x’);
ylabel(‘Error’);
legend(‘|q_{n+1} – q_n| Error’, ‘|s_{n+1} – s_n| Error’);
end

% Generate error table for fixed times from 0 to 10 in increments of 0.5
fixed_times = 0:0.5:10;
error_table_q = zeros(length(fixed_times), 1);
error_table_s = zeros(length(fixed_times), 1);

for i = 1:length(fixed_times)
time_idx = find(t_span >= fixed_times(i), 1);
error_table_q(i) = mean(error_q(:, time_idx));
error_table_s(i) = mean(error_s(:, time_idx));
end

% Display the error table
error_table = table(fixed_times’, error_table_q, error_table_s, …
‘VariableNames’, {‘Time’, ‘Error_q’, ‘Error_s’});
disp(error_table);

toc;

function dydt = dydt(~, u, N)
dydt = zeros(2*N, 1);
q = u(1:N);
s = u(N+1:2*N);

% Handle boundary conditions
for n = 3:N-2
dydt(n) = 1/2 * s(n) * conj(s(n)) – 1/2 * s(n+1) * conj(s(n+1));
dydt(N+n) = 1/2 * (q(n+1) – q(n)) * (s(n+1) – s(n));
end
end ode45, numerical integration, differential equations MATLAB Answers — New Questions

​

Tags: matlab

Share this!

Related posts

Generate ST code from a look-up table with CONSTANT attribute
2025-05-22

Generate ST code from a look-up table with CONSTANT attribute

“no healthy upstream” error when trying to access My Account
2025-05-22

“no healthy upstream” error when trying to access My Account

MATLAB Answers is provisionally back?
2025-05-21

MATLAB Answers is provisionally back?

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Search

Categories

  • Matlab
  • Microsoft
  • News
  • Other
Application Package Repository Telkom University

Tags

matlab microsoft opensources
Application Package Download License

Application Package Download License

Adobe
Google for Education
IBM
Matlab
Microsoft
Wordpress
Visual Paradigm
Opensource

Sign Up For Newsletters

Be the First to Know. Sign up for newsletter today

Application Package Repository Telkom University

Portal Application Package Repository Telkom University, for internal use only, empower civitas academica in study and research.

Information

  • Telkom University
  • About Us
  • Contact
  • Forum Discussion
  • FAQ
  • Helpdesk Ticket

Contact Us

  • Ask: Any question please read FAQ
  • Mail: [email protected]
  • Call: +62 823-1994-9941
  • WA: +62 823-1994-9943
  • Site: Gedung Panambulai. Jl. Telekomunikasi

Copyright © Telkom University. All Rights Reserved. ch

  • FAQ
  • Privacy Policy
  • Term

This Application Package for internal Telkom University only (students and employee). Chiers... Dismiss