Why such a fuss with ndgrid and meshgrid issues?
Folks,
In the world of artificial intelligence and more intelligent programming, I would like to see more intelligence put into place with how function like griddata, imagesc, pcolor, and surf interpret their inputs. There is an unfortunate degree of confusion that has persisted since the early 2000’s at least with how to interpret arrays in terms of Cartesian axes. I am troubled today with trying to understand how griddata is working on input that I setup using ndgrid. I appear to have something wrong, and earth layers are not dipping in the direction that I expect. The documentation says griddata can work with either meshgrid or griddata input, which makes my head spin given my understanding of both meshgrid and ndgrid. What is really troubling is that the Mathworks documentation routinely contains only simple examples where the person that created the documentation made "quicky" non-realistic examples where they simply created input arrays that had exactly the same x and y dimensions, which does not help anyone in my situation who is dealing with realistic inputs that do not have the same dimension lengths. I request that future documentation efforts spend a little extra time making non-symmetric input x and y arrays as examples.Folks,
In the world of artificial intelligence and more intelligent programming, I would like to see more intelligence put into place with how function like griddata, imagesc, pcolor, and surf interpret their inputs. There is an unfortunate degree of confusion that has persisted since the early 2000’s at least with how to interpret arrays in terms of Cartesian axes. I am troubled today with trying to understand how griddata is working on input that I setup using ndgrid. I appear to have something wrong, and earth layers are not dipping in the direction that I expect. The documentation says griddata can work with either meshgrid or griddata input, which makes my head spin given my understanding of both meshgrid and ndgrid. What is really troubling is that the Mathworks documentation routinely contains only simple examples where the person that created the documentation made "quicky" non-realistic examples where they simply created input arrays that had exactly the same x and y dimensions, which does not help anyone in my situation who is dealing with realistic inputs that do not have the same dimension lengths. I request that future documentation efforts spend a little extra time making non-symmetric input x and y arrays as examples. Folks,
In the world of artificial intelligence and more intelligent programming, I would like to see more intelligence put into place with how function like griddata, imagesc, pcolor, and surf interpret their inputs. There is an unfortunate degree of confusion that has persisted since the early 2000’s at least with how to interpret arrays in terms of Cartesian axes. I am troubled today with trying to understand how griddata is working on input that I setup using ndgrid. I appear to have something wrong, and earth layers are not dipping in the direction that I expect. The documentation says griddata can work with either meshgrid or griddata input, which makes my head spin given my understanding of both meshgrid and ndgrid. What is really troubling is that the Mathworks documentation routinely contains only simple examples where the person that created the documentation made "quicky" non-realistic examples where they simply created input arrays that had exactly the same x and y dimensions, which does not help anyone in my situation who is dealing with realistic inputs that do not have the same dimension lengths. I request that future documentation efforts spend a little extra time making non-symmetric input x and y arrays as examples. meshgrid, ndgrid, imagesc, pcolor, surf, griddata, slice, obliqueslice MATLAB Answers — New Questions