2D data fitting – Surface
I have some numbers as a function of 2 variables: _( x, y ) ↦ z_.
I would like to know which function _z = z( x, y )_ best fits my data.
Unfortunately, I don’t have any hint, I mean, there’s no theoretical background on these numbers. They’re the result ( _z_ ) of some FEM simulations of a system, being the simulation a parametric sweep over two parameters ( _x_ and _y_ ) of the system.
Here’s my data:
x = [1 2 4 6 8 10 13 17 21 25];
y = [0.2 0.5 1 2 4 7 10 14 18 22];
z = [1 0.6844 0.3048 0.2124 0.1689 0.1432 0.1192 0.1015 0.0908 0.0841;…
1.000 0.7096 0.3595 0.2731 0.2322 0.2081 0.1857 0.1690 0.1590 0.1529;…
1.000 0.7451 0.4362 0.3585 0.3217 0.2999 0.2797 0.2648 0.2561 0.2504;…
1.000 0.7979 0.5519 0.4877 0.4574 0.4394 0.4228 0.4107 0.4037 0.3994;…
1.000 0.8628 0.6945 0.6490 0.6271 0.6145 0.6027 0.5945 0.5896 0.5870;…
1.000 0.9131 0.8057 0.7758 0.7614 0.7531 0.7457 0.7410 0.7383 0.7368;…
1.000 0.9397 0.8647 0.8436 0.8333 0.8278 0.8228 0.8195 0.8181 0.8171;…
1.000 0.9594 0.9087 0.8942 0.8877 0.8839 0.8808 0.8791 0.8783 0.8777;…
1.000 0.9705 0.9342 0.9238 0.9190 0.9165 0.9145 0.9133 0.9131 0.9127;…
1.000 0.9776 0.9502 0.9425 0.9390 0.9372 0.9358 0.9352 0.9349 0.9348];
I tried with MATLAB with the Curve Fitting app, but I didn’t succeed. The ‘polynomial’ fitting doesn’t work well. I would like to use the ‘custom equation’ fitting, but I don’t know what equation to start. I don’t have much practice in data analysis.
Any hint?
<<http://i.stack.imgur.com/tlqDu.png>>I have some numbers as a function of 2 variables: _( x, y ) ↦ z_.
I would like to know which function _z = z( x, y )_ best fits my data.
Unfortunately, I don’t have any hint, I mean, there’s no theoretical background on these numbers. They’re the result ( _z_ ) of some FEM simulations of a system, being the simulation a parametric sweep over two parameters ( _x_ and _y_ ) of the system.
Here’s my data:
x = [1 2 4 6 8 10 13 17 21 25];
y = [0.2 0.5 1 2 4 7 10 14 18 22];
z = [1 0.6844 0.3048 0.2124 0.1689 0.1432 0.1192 0.1015 0.0908 0.0841;…
1.000 0.7096 0.3595 0.2731 0.2322 0.2081 0.1857 0.1690 0.1590 0.1529;…
1.000 0.7451 0.4362 0.3585 0.3217 0.2999 0.2797 0.2648 0.2561 0.2504;…
1.000 0.7979 0.5519 0.4877 0.4574 0.4394 0.4228 0.4107 0.4037 0.3994;…
1.000 0.8628 0.6945 0.6490 0.6271 0.6145 0.6027 0.5945 0.5896 0.5870;…
1.000 0.9131 0.8057 0.7758 0.7614 0.7531 0.7457 0.7410 0.7383 0.7368;…
1.000 0.9397 0.8647 0.8436 0.8333 0.8278 0.8228 0.8195 0.8181 0.8171;…
1.000 0.9594 0.9087 0.8942 0.8877 0.8839 0.8808 0.8791 0.8783 0.8777;…
1.000 0.9705 0.9342 0.9238 0.9190 0.9165 0.9145 0.9133 0.9131 0.9127;…
1.000 0.9776 0.9502 0.9425 0.9390 0.9372 0.9358 0.9352 0.9349 0.9348];
I tried with MATLAB with the Curve Fitting app, but I didn’t succeed. The ‘polynomial’ fitting doesn’t work well. I would like to use the ‘custom equation’ fitting, but I don’t know what equation to start. I don’t have much practice in data analysis.
Any hint?
<<http://i.stack.imgur.com/tlqDu.png>> I have some numbers as a function of 2 variables: _( x, y ) ↦ z_.
I would like to know which function _z = z( x, y )_ best fits my data.
Unfortunately, I don’t have any hint, I mean, there’s no theoretical background on these numbers. They’re the result ( _z_ ) of some FEM simulations of a system, being the simulation a parametric sweep over two parameters ( _x_ and _y_ ) of the system.
Here’s my data:
x = [1 2 4 6 8 10 13 17 21 25];
y = [0.2 0.5 1 2 4 7 10 14 18 22];
z = [1 0.6844 0.3048 0.2124 0.1689 0.1432 0.1192 0.1015 0.0908 0.0841;…
1.000 0.7096 0.3595 0.2731 0.2322 0.2081 0.1857 0.1690 0.1590 0.1529;…
1.000 0.7451 0.4362 0.3585 0.3217 0.2999 0.2797 0.2648 0.2561 0.2504;…
1.000 0.7979 0.5519 0.4877 0.4574 0.4394 0.4228 0.4107 0.4037 0.3994;…
1.000 0.8628 0.6945 0.6490 0.6271 0.6145 0.6027 0.5945 0.5896 0.5870;…
1.000 0.9131 0.8057 0.7758 0.7614 0.7531 0.7457 0.7410 0.7383 0.7368;…
1.000 0.9397 0.8647 0.8436 0.8333 0.8278 0.8228 0.8195 0.8181 0.8171;…
1.000 0.9594 0.9087 0.8942 0.8877 0.8839 0.8808 0.8791 0.8783 0.8777;…
1.000 0.9705 0.9342 0.9238 0.9190 0.9165 0.9145 0.9133 0.9131 0.9127;…
1.000 0.9776 0.9502 0.9425 0.9390 0.9372 0.9358 0.9352 0.9349 0.9348];
I tried with MATLAB with the Curve Fitting app, but I didn’t succeed. The ‘polynomial’ fitting doesn’t work well. I would like to use the ‘custom equation’ fitting, but I don’t know what equation to start. I don’t have much practice in data analysis.
Any hint?
<<http://i.stack.imgur.com/tlqDu.png>> statistics, 3d, 2d, surface, data analysis, fitting, curve fitting, lsqcurvefit, nlinfit, fit regression surface to 3d data MATLAB Answers — New Questions