Extracting signal phase using MAximum Entropy Method
Dear community,
I have measured the SFG signal as a function of IR frequency (SFG intensity vs Frequency) and saved it in the file "Rehl.txt". The obtained phase for this signal is saved in another file named "MEM_Phi.txt". I am now using the Maximum Entropy Method (MEM) to extract the phase of the SFG signal.
I have written a code in the file "MEM_Phase.m", but the problem is that the calculated MEM phase is different from the actual phase provided in "MEM_Phi.txt". I would greatly appreciate any help in resolving this issue.
I have also attached a paper that contains the relevant equations. In equation 14 of the paper, P(v) represents the SFG intensity that we have already measured. The unknowns in equation 14 are the values of "beta" and "a_k". By obtaining the values of "a_k", we can calculate the denominator of equation 14, which is a complex value. The MEM phase will then be the phase of these complex values.
Thank you for your assistance.Dear community,
I have measured the SFG signal as a function of IR frequency (SFG intensity vs Frequency) and saved it in the file "Rehl.txt". The obtained phase for this signal is saved in another file named "MEM_Phi.txt". I am now using the Maximum Entropy Method (MEM) to extract the phase of the SFG signal.
I have written a code in the file "MEM_Phase.m", but the problem is that the calculated MEM phase is different from the actual phase provided in "MEM_Phi.txt". I would greatly appreciate any help in resolving this issue.
I have also attached a paper that contains the relevant equations. In equation 14 of the paper, P(v) represents the SFG intensity that we have already measured. The unknowns in equation 14 are the values of "beta" and "a_k". By obtaining the values of "a_k", we can calculate the denominator of equation 14, which is a complex value. The MEM phase will then be the phase of these complex values.
Thank you for your assistance. Dear community,
I have measured the SFG signal as a function of IR frequency (SFG intensity vs Frequency) and saved it in the file "Rehl.txt". The obtained phase for this signal is saved in another file named "MEM_Phi.txt". I am now using the Maximum Entropy Method (MEM) to extract the phase of the SFG signal.
I have written a code in the file "MEM_Phase.m", but the problem is that the calculated MEM phase is different from the actual phase provided in "MEM_Phi.txt". I would greatly appreciate any help in resolving this issue.
I have also attached a paper that contains the relevant equations. In equation 14 of the paper, P(v) represents the SFG intensity that we have already measured. The unknowns in equation 14 are the values of "beta" and "a_k". By obtaining the values of "a_k", we can calculate the denominator of equation 14, which is a complex value. The MEM phase will then be the phase of these complex values.
Thank you for your assistance. phase, sfg, signal, mem MATLAB Answers — New Questions