In stereocalibration, is the relationship between the ‘R and T output as PoseCamera2’ and the actual camera position the same, or does the sign of x in T reverse?
I am currently calibrating four cameras (Camera1, Camera2, Camera3, Camera4). To do this, I have created pairs (Camera1 & Camera2, Camera2 & Camera3, Camera1 & Camera4) and performed calibration to determine the relative positions of all cameras in the coordinate system of Camera1. For Camera1 and Camera2, I added about 80 images of a checkerboard taken using the stereocalibration feature of the calibration app for calibration.
As a result, I obtained the following:
R = [0.794, -0.0318, 0.605; 0.0226, 0.999, 0.0228; -0.606, -0.00446, 0.795]
T = [-2793, 44.86, 483.2] (units in [mm]).
The visual output, which I have attached as an image, shows that rotating Camera2 by R and translating it by T to align with the coordinate system of Camera1 makes it coincide with Camera1. Therefore, it can be seen that R and T correspond with the visual output.
However, the actual relative position of Camera2 to Camera1 in the coordinate system of Camera1 should be [2793, 44.86, 482.3]. Thus, I am considering that the sign of the x component of T obtained through stereocalibration might be reversed compared to the actual T. Is my understanding incorrect?I am currently calibrating four cameras (Camera1, Camera2, Camera3, Camera4). To do this, I have created pairs (Camera1 & Camera2, Camera2 & Camera3, Camera1 & Camera4) and performed calibration to determine the relative positions of all cameras in the coordinate system of Camera1. For Camera1 and Camera2, I added about 80 images of a checkerboard taken using the stereocalibration feature of the calibration app for calibration.
As a result, I obtained the following:
R = [0.794, -0.0318, 0.605; 0.0226, 0.999, 0.0228; -0.606, -0.00446, 0.795]
T = [-2793, 44.86, 483.2] (units in [mm]).
The visual output, which I have attached as an image, shows that rotating Camera2 by R and translating it by T to align with the coordinate system of Camera1 makes it coincide with Camera1. Therefore, it can be seen that R and T correspond with the visual output.
However, the actual relative position of Camera2 to Camera1 in the coordinate system of Camera1 should be [2793, 44.86, 482.3]. Thus, I am considering that the sign of the x component of T obtained through stereocalibration might be reversed compared to the actual T. Is my understanding incorrect? I am currently calibrating four cameras (Camera1, Camera2, Camera3, Camera4). To do this, I have created pairs (Camera1 & Camera2, Camera2 & Camera3, Camera1 & Camera4) and performed calibration to determine the relative positions of all cameras in the coordinate system of Camera1. For Camera1 and Camera2, I added about 80 images of a checkerboard taken using the stereocalibration feature of the calibration app for calibration.
As a result, I obtained the following:
R = [0.794, -0.0318, 0.605; 0.0226, 0.999, 0.0228; -0.606, -0.00446, 0.795]
T = [-2793, 44.86, 483.2] (units in [mm]).
The visual output, which I have attached as an image, shows that rotating Camera2 by R and translating it by T to align with the coordinate system of Camera1 makes it coincide with Camera1. Therefore, it can be seen that R and T correspond with the visual output.
However, the actual relative position of Camera2 to Camera1 in the coordinate system of Camera1 should be [2793, 44.86, 482.3]. Thus, I am considering that the sign of the x component of T obtained through stereocalibration might be reversed compared to the actual T. Is my understanding incorrect? image processing, calibratrion, stereocalibration MATLAB Answers — New Questions