Getting the Error “Not enough input arguments” but I did the exact same method earlier in the code without issue..
clear all
close all
clc
% EMEC-342 Mini Project: 4-Bar Linkage Analysis
% Known Values
a=10; % cm
b=25; %cm
c=25; %cm
d = 20; % cm
AP=50; % cm
n=a/2;
q=c/2;
delta2=0;
delta3=0;
delta4=0;
w2=10; %rad/sec
alpha2=0;
oc=1;
t2=zeros(1,361); % rotation angle theta2 of O2A
for (i=1:361)
t2=i-1;
end
% Calculation of K1,K2,K3,K4,K5
K1=d/a;
K2=d/c;
K3=(a^2-b^2+c^2+d^2)/(2*a*c);
K4=d/b;
K5=(c^2-d^2-a^2-b^2)/(2*a*b);
%% Matlab Functions
function f=Grashof(lengths)
u=sort(lengths);
if((u(1)+u(4))<(u(2)+u(3)))
f=1;
elseif (u(1)+u(4))==(u(2)+u(3))
f=0;
else
f=-1;
end
end
%% Functions for calculation of angular orientations theta3, theta4
% of links AB and O4B
% Calculation of A
function AA=A(K1,K2,K3,t2)
AA=cos(t2)-K1-K2*cos(t2)+K3;
end
% Calculation of B
function BB=B(t2)
BB=-2*sin(t2);
end
% Calculation of C
function CC=C(K1,K2,K3,t2)
CC=K1-(K2+1)*cos(t2)+K3;
end
% Calculation of angular orientation theta4
function t4=theta4(K1,K2,K3,t2,oc)
AA = A(K1,K2,K3,theta2);
BB = B(theta2);
CC = C(K1,K2,K3,theta2);
t4=2*atan((-BB+oc*sqrt(BB^2-4*AA*CC))/(2*AA));
end
% Calculation of D
function DD=D(K1,K4,K5,t2)
DD=cos(t2)-K1+(K4*cos(t2))+K5;
end
% Calculation of E
function EE=E(t2)
EE=-2*sin(t2);
end
% Calculation of F
function FF=F(K1,K4,K5,t2)
FF=K1+(K4-1)*cos(t2)+K5;
end
% Calculation of angular orientation theta3
function t3=theta3(K1,K4,K5,t2,oc)
DD=D(K1,K4,K5,t2);
EE=E(t2);
FF=F(K1,K4,K5,t2);
t3=2*atan((-EE+oc*sqrt(EE^2-4*DD*FF))/(2*DD));
end
%% Functions for calculation of angular speeds omega3, omega4
% of links AB and O4B
%returns results as vector of x and y components
% returns x and y component
function as=angSpeed(a,b,c,w2,t2,t3,t4)
as=[w2*a/b*sin(t4-t2)/sin(t3-t4),w2*a/c*sin(t2-t3)/sin(t4-t3)];
end
%% Position Vectors
function r=RAO2(a,t2)
r= [a*cos(t2),a*sin(t2)];
end
function r=RPA(AP,t3,delta3)
r=AP*[cos(t3+delta3),sin(t3+delta3)];
end
function r=RPO2(a,PA,t2,t3,delta3)
r=RAO2(a,t2)+RPA(PA,t3,delta3);
end
%% Functions for calculation of angular acceleration alpha3, alpha4
% of links AB and O4B
%returns results as vector of x and y components
% returns x and y component
% Calculation of G
function GG=G(c,theta4)
GG=c*sin(theta4);
end
% Calculation of H
function HH=H(b,theta3)
HH=b*sin(theta3);
end
% Calculation of I
function II=I(a,b,c,alpha2,w2,omega3,omega4,t2,theta3,theta4)
II=(a*alpha2*sin(t2))+(a*w2^2*cos(t2))+(b*omega3^2*cos(theta3))-(c*omega4^2*cos(theta4));
end
% Calculation of J
function JJ=J(c,theta4)
JJ=c*cos(theta4);
end
% Calculation of K
function KK=K(b,theta3)
KK=b*cos(theta3);
end
% Calculation of L
function LL=L(a,b,c,alpha2,w2,angSpeed,t2,theta3,theta4)
LL=(a*alpha2*cos(t2))+(a*w2^2*sin(t2))+(b*angSpeed(1)^2*sin(theta3))-(c*angSpeed(2)^2*sin(theta4));
end
function aa=angAccel(G,H,I,J,K,L)
GG=G(c,theta4);
HH=H(b,theta3);
II=I(a,b,c,alpha2,w2,omega3,omega4,t2,theta3,theta4);
JJ=J(c,theta4);
KK=K(b,theta3);
LL=L(a,b,c,alpha2,w2,angSpeed,t2,theta3,theta4);
aa=[(II*JJ-GG*LL)/(GG*KK-HH*JJ),(II*KK-HH*JJ)/(GG*KK-HH*JJ)];
end
%% Trace Point Velocity
function v=VA(a,w2,t2)
v=[-a*w2*sin(t2),a*w2*cos(t2)];
end
function v=VPA(AP,angSpeed,theta3,delta3)
v=AP*[-angSpeed(1)*sin(theta3+delta3),angSpeed(1)*cos(theta3+delta3)];
end
function v=VPO2(a,w2,angSpeed,t2,theta3,delta3,AP)
v=VA(a,w2,t2)+VPA(AP,angSpeed(1),theta3,delta3);
end
%% Trace Point Acceleration
function a=aA(a,alpha2,t2,w2)
a=[-a*alpha2*sin(t2),-a*w2^2*cos(t2)];
end
function a=APA(AP,angSpeed,theta3,delta3,angAccel)
a=AP*[-angAccel(1)*sin(theta3+delta3),-angSpeed(1)^2*cos(theta3+delta3)];
end
function a=APO2(a,w2,angSpeed,t2,theta3,delta3,AP)
a=aA(a,alpha2,t2,w2)+APA(AP,angSpeed(1),theta3,delta3,alpha3);
end
%% Tracepoint Acceleration N
function aN=ANO2(alpha2,t2,delta2,w2,RNO2)
aN=RNO2*[-alpha2*sin(t2+delta2)-(w2^2*cos(t2+deta2)),alpha2*cos(t2+delta2)-(w2^2*sin(t2+delta2))];
end
%% Plots
% Plot of theta3 and theta4 as functions of theta2
figure(1)
plot(t2,theta3,’r:’);
hold on
plot(t2,theta4,’b-‘);
% Plot of omega3 and omega4 as functions if theta2
figure(2)
plot(t2,angSpeed(1),’r:’);
hold on
plot(t2,angSpeed(2),’b-‘);
% Plot of alpha3 and alpha4 as functions of theta2
figure(3)
plot(t2,angAccel(1),’r:’);
hold on
plot(t2,angAccel(2),’b-‘);
% Plot of RPO2y as a function of RPO2x
figure(4)
plot(RPO2(1),RPO2(2));
% Plot of VPO2x as a function of RPO2x
figure(5)
plot(RPO2(1),VPO2(1));
% Plot of VPO2y as a function of RPO2y
figure(6)
plot(RPO2(2),VPO2(2));
% Plot of magnitude of VPO2 as a function of theta2
figure(7)
VPO2mag=sqrt(v(1,i)^2+v(2,i)^2);
plot(t2,VPO2mag);
% Plot of aPO2x as a function of RPO2x
figure(8)
plot(r(1),a(2));
% Plot of aPO2y as a function of RPO2y
figure(9)
plot(r(2),a(2));
% Plot of VPO2y as a function of RPO2y
figure(10)
aNO2mag=sqrt(aN(1,i)^2+aN(2,i)^2);
plot(t2,aNO2mag);clear all
close all
clc
% EMEC-342 Mini Project: 4-Bar Linkage Analysis
% Known Values
a=10; % cm
b=25; %cm
c=25; %cm
d = 20; % cm
AP=50; % cm
n=a/2;
q=c/2;
delta2=0;
delta3=0;
delta4=0;
w2=10; %rad/sec
alpha2=0;
oc=1;
t2=zeros(1,361); % rotation angle theta2 of O2A
for (i=1:361)
t2=i-1;
end
% Calculation of K1,K2,K3,K4,K5
K1=d/a;
K2=d/c;
K3=(a^2-b^2+c^2+d^2)/(2*a*c);
K4=d/b;
K5=(c^2-d^2-a^2-b^2)/(2*a*b);
%% Matlab Functions
function f=Grashof(lengths)
u=sort(lengths);
if((u(1)+u(4))<(u(2)+u(3)))
f=1;
elseif (u(1)+u(4))==(u(2)+u(3))
f=0;
else
f=-1;
end
end
%% Functions for calculation of angular orientations theta3, theta4
% of links AB and O4B
% Calculation of A
function AA=A(K1,K2,K3,t2)
AA=cos(t2)-K1-K2*cos(t2)+K3;
end
% Calculation of B
function BB=B(t2)
BB=-2*sin(t2);
end
% Calculation of C
function CC=C(K1,K2,K3,t2)
CC=K1-(K2+1)*cos(t2)+K3;
end
% Calculation of angular orientation theta4
function t4=theta4(K1,K2,K3,t2,oc)
AA = A(K1,K2,K3,theta2);
BB = B(theta2);
CC = C(K1,K2,K3,theta2);
t4=2*atan((-BB+oc*sqrt(BB^2-4*AA*CC))/(2*AA));
end
% Calculation of D
function DD=D(K1,K4,K5,t2)
DD=cos(t2)-K1+(K4*cos(t2))+K5;
end
% Calculation of E
function EE=E(t2)
EE=-2*sin(t2);
end
% Calculation of F
function FF=F(K1,K4,K5,t2)
FF=K1+(K4-1)*cos(t2)+K5;
end
% Calculation of angular orientation theta3
function t3=theta3(K1,K4,K5,t2,oc)
DD=D(K1,K4,K5,t2);
EE=E(t2);
FF=F(K1,K4,K5,t2);
t3=2*atan((-EE+oc*sqrt(EE^2-4*DD*FF))/(2*DD));
end
%% Functions for calculation of angular speeds omega3, omega4
% of links AB and O4B
%returns results as vector of x and y components
% returns x and y component
function as=angSpeed(a,b,c,w2,t2,t3,t4)
as=[w2*a/b*sin(t4-t2)/sin(t3-t4),w2*a/c*sin(t2-t3)/sin(t4-t3)];
end
%% Position Vectors
function r=RAO2(a,t2)
r= [a*cos(t2),a*sin(t2)];
end
function r=RPA(AP,t3,delta3)
r=AP*[cos(t3+delta3),sin(t3+delta3)];
end
function r=RPO2(a,PA,t2,t3,delta3)
r=RAO2(a,t2)+RPA(PA,t3,delta3);
end
%% Functions for calculation of angular acceleration alpha3, alpha4
% of links AB and O4B
%returns results as vector of x and y components
% returns x and y component
% Calculation of G
function GG=G(c,theta4)
GG=c*sin(theta4);
end
% Calculation of H
function HH=H(b,theta3)
HH=b*sin(theta3);
end
% Calculation of I
function II=I(a,b,c,alpha2,w2,omega3,omega4,t2,theta3,theta4)
II=(a*alpha2*sin(t2))+(a*w2^2*cos(t2))+(b*omega3^2*cos(theta3))-(c*omega4^2*cos(theta4));
end
% Calculation of J
function JJ=J(c,theta4)
JJ=c*cos(theta4);
end
% Calculation of K
function KK=K(b,theta3)
KK=b*cos(theta3);
end
% Calculation of L
function LL=L(a,b,c,alpha2,w2,angSpeed,t2,theta3,theta4)
LL=(a*alpha2*cos(t2))+(a*w2^2*sin(t2))+(b*angSpeed(1)^2*sin(theta3))-(c*angSpeed(2)^2*sin(theta4));
end
function aa=angAccel(G,H,I,J,K,L)
GG=G(c,theta4);
HH=H(b,theta3);
II=I(a,b,c,alpha2,w2,omega3,omega4,t2,theta3,theta4);
JJ=J(c,theta4);
KK=K(b,theta3);
LL=L(a,b,c,alpha2,w2,angSpeed,t2,theta3,theta4);
aa=[(II*JJ-GG*LL)/(GG*KK-HH*JJ),(II*KK-HH*JJ)/(GG*KK-HH*JJ)];
end
%% Trace Point Velocity
function v=VA(a,w2,t2)
v=[-a*w2*sin(t2),a*w2*cos(t2)];
end
function v=VPA(AP,angSpeed,theta3,delta3)
v=AP*[-angSpeed(1)*sin(theta3+delta3),angSpeed(1)*cos(theta3+delta3)];
end
function v=VPO2(a,w2,angSpeed,t2,theta3,delta3,AP)
v=VA(a,w2,t2)+VPA(AP,angSpeed(1),theta3,delta3);
end
%% Trace Point Acceleration
function a=aA(a,alpha2,t2,w2)
a=[-a*alpha2*sin(t2),-a*w2^2*cos(t2)];
end
function a=APA(AP,angSpeed,theta3,delta3,angAccel)
a=AP*[-angAccel(1)*sin(theta3+delta3),-angSpeed(1)^2*cos(theta3+delta3)];
end
function a=APO2(a,w2,angSpeed,t2,theta3,delta3,AP)
a=aA(a,alpha2,t2,w2)+APA(AP,angSpeed(1),theta3,delta3,alpha3);
end
%% Tracepoint Acceleration N
function aN=ANO2(alpha2,t2,delta2,w2,RNO2)
aN=RNO2*[-alpha2*sin(t2+delta2)-(w2^2*cos(t2+deta2)),alpha2*cos(t2+delta2)-(w2^2*sin(t2+delta2))];
end
%% Plots
% Plot of theta3 and theta4 as functions of theta2
figure(1)
plot(t2,theta3,’r:’);
hold on
plot(t2,theta4,’b-‘);
% Plot of omega3 and omega4 as functions if theta2
figure(2)
plot(t2,angSpeed(1),’r:’);
hold on
plot(t2,angSpeed(2),’b-‘);
% Plot of alpha3 and alpha4 as functions of theta2
figure(3)
plot(t2,angAccel(1),’r:’);
hold on
plot(t2,angAccel(2),’b-‘);
% Plot of RPO2y as a function of RPO2x
figure(4)
plot(RPO2(1),RPO2(2));
% Plot of VPO2x as a function of RPO2x
figure(5)
plot(RPO2(1),VPO2(1));
% Plot of VPO2y as a function of RPO2y
figure(6)
plot(RPO2(2),VPO2(2));
% Plot of magnitude of VPO2 as a function of theta2
figure(7)
VPO2mag=sqrt(v(1,i)^2+v(2,i)^2);
plot(t2,VPO2mag);
% Plot of aPO2x as a function of RPO2x
figure(8)
plot(r(1),a(2));
% Plot of aPO2y as a function of RPO2y
figure(9)
plot(r(2),a(2));
% Plot of VPO2y as a function of RPO2y
figure(10)
aNO2mag=sqrt(aN(1,i)^2+aN(2,i)^2);
plot(t2,aNO2mag); clear all
close all
clc
% EMEC-342 Mini Project: 4-Bar Linkage Analysis
% Known Values
a=10; % cm
b=25; %cm
c=25; %cm
d = 20; % cm
AP=50; % cm
n=a/2;
q=c/2;
delta2=0;
delta3=0;
delta4=0;
w2=10; %rad/sec
alpha2=0;
oc=1;
t2=zeros(1,361); % rotation angle theta2 of O2A
for (i=1:361)
t2=i-1;
end
% Calculation of K1,K2,K3,K4,K5
K1=d/a;
K2=d/c;
K3=(a^2-b^2+c^2+d^2)/(2*a*c);
K4=d/b;
K5=(c^2-d^2-a^2-b^2)/(2*a*b);
%% Matlab Functions
function f=Grashof(lengths)
u=sort(lengths);
if((u(1)+u(4))<(u(2)+u(3)))
f=1;
elseif (u(1)+u(4))==(u(2)+u(3))
f=0;
else
f=-1;
end
end
%% Functions for calculation of angular orientations theta3, theta4
% of links AB and O4B
% Calculation of A
function AA=A(K1,K2,K3,t2)
AA=cos(t2)-K1-K2*cos(t2)+K3;
end
% Calculation of B
function BB=B(t2)
BB=-2*sin(t2);
end
% Calculation of C
function CC=C(K1,K2,K3,t2)
CC=K1-(K2+1)*cos(t2)+K3;
end
% Calculation of angular orientation theta4
function t4=theta4(K1,K2,K3,t2,oc)
AA = A(K1,K2,K3,theta2);
BB = B(theta2);
CC = C(K1,K2,K3,theta2);
t4=2*atan((-BB+oc*sqrt(BB^2-4*AA*CC))/(2*AA));
end
% Calculation of D
function DD=D(K1,K4,K5,t2)
DD=cos(t2)-K1+(K4*cos(t2))+K5;
end
% Calculation of E
function EE=E(t2)
EE=-2*sin(t2);
end
% Calculation of F
function FF=F(K1,K4,K5,t2)
FF=K1+(K4-1)*cos(t2)+K5;
end
% Calculation of angular orientation theta3
function t3=theta3(K1,K4,K5,t2,oc)
DD=D(K1,K4,K5,t2);
EE=E(t2);
FF=F(K1,K4,K5,t2);
t3=2*atan((-EE+oc*sqrt(EE^2-4*DD*FF))/(2*DD));
end
%% Functions for calculation of angular speeds omega3, omega4
% of links AB and O4B
%returns results as vector of x and y components
% returns x and y component
function as=angSpeed(a,b,c,w2,t2,t3,t4)
as=[w2*a/b*sin(t4-t2)/sin(t3-t4),w2*a/c*sin(t2-t3)/sin(t4-t3)];
end
%% Position Vectors
function r=RAO2(a,t2)
r= [a*cos(t2),a*sin(t2)];
end
function r=RPA(AP,t3,delta3)
r=AP*[cos(t3+delta3),sin(t3+delta3)];
end
function r=RPO2(a,PA,t2,t3,delta3)
r=RAO2(a,t2)+RPA(PA,t3,delta3);
end
%% Functions for calculation of angular acceleration alpha3, alpha4
% of links AB and O4B
%returns results as vector of x and y components
% returns x and y component
% Calculation of G
function GG=G(c,theta4)
GG=c*sin(theta4);
end
% Calculation of H
function HH=H(b,theta3)
HH=b*sin(theta3);
end
% Calculation of I
function II=I(a,b,c,alpha2,w2,omega3,omega4,t2,theta3,theta4)
II=(a*alpha2*sin(t2))+(a*w2^2*cos(t2))+(b*omega3^2*cos(theta3))-(c*omega4^2*cos(theta4));
end
% Calculation of J
function JJ=J(c,theta4)
JJ=c*cos(theta4);
end
% Calculation of K
function KK=K(b,theta3)
KK=b*cos(theta3);
end
% Calculation of L
function LL=L(a,b,c,alpha2,w2,angSpeed,t2,theta3,theta4)
LL=(a*alpha2*cos(t2))+(a*w2^2*sin(t2))+(b*angSpeed(1)^2*sin(theta3))-(c*angSpeed(2)^2*sin(theta4));
end
function aa=angAccel(G,H,I,J,K,L)
GG=G(c,theta4);
HH=H(b,theta3);
II=I(a,b,c,alpha2,w2,omega3,omega4,t2,theta3,theta4);
JJ=J(c,theta4);
KK=K(b,theta3);
LL=L(a,b,c,alpha2,w2,angSpeed,t2,theta3,theta4);
aa=[(II*JJ-GG*LL)/(GG*KK-HH*JJ),(II*KK-HH*JJ)/(GG*KK-HH*JJ)];
end
%% Trace Point Velocity
function v=VA(a,w2,t2)
v=[-a*w2*sin(t2),a*w2*cos(t2)];
end
function v=VPA(AP,angSpeed,theta3,delta3)
v=AP*[-angSpeed(1)*sin(theta3+delta3),angSpeed(1)*cos(theta3+delta3)];
end
function v=VPO2(a,w2,angSpeed,t2,theta3,delta3,AP)
v=VA(a,w2,t2)+VPA(AP,angSpeed(1),theta3,delta3);
end
%% Trace Point Acceleration
function a=aA(a,alpha2,t2,w2)
a=[-a*alpha2*sin(t2),-a*w2^2*cos(t2)];
end
function a=APA(AP,angSpeed,theta3,delta3,angAccel)
a=AP*[-angAccel(1)*sin(theta3+delta3),-angSpeed(1)^2*cos(theta3+delta3)];
end
function a=APO2(a,w2,angSpeed,t2,theta3,delta3,AP)
a=aA(a,alpha2,t2,w2)+APA(AP,angSpeed(1),theta3,delta3,alpha3);
end
%% Tracepoint Acceleration N
function aN=ANO2(alpha2,t2,delta2,w2,RNO2)
aN=RNO2*[-alpha2*sin(t2+delta2)-(w2^2*cos(t2+deta2)),alpha2*cos(t2+delta2)-(w2^2*sin(t2+delta2))];
end
%% Plots
% Plot of theta3 and theta4 as functions of theta2
figure(1)
plot(t2,theta3,’r:’);
hold on
plot(t2,theta4,’b-‘);
% Plot of omega3 and omega4 as functions if theta2
figure(2)
plot(t2,angSpeed(1),’r:’);
hold on
plot(t2,angSpeed(2),’b-‘);
% Plot of alpha3 and alpha4 as functions of theta2
figure(3)
plot(t2,angAccel(1),’r:’);
hold on
plot(t2,angAccel(2),’b-‘);
% Plot of RPO2y as a function of RPO2x
figure(4)
plot(RPO2(1),RPO2(2));
% Plot of VPO2x as a function of RPO2x
figure(5)
plot(RPO2(1),VPO2(1));
% Plot of VPO2y as a function of RPO2y
figure(6)
plot(RPO2(2),VPO2(2));
% Plot of magnitude of VPO2 as a function of theta2
figure(7)
VPO2mag=sqrt(v(1,i)^2+v(2,i)^2);
plot(t2,VPO2mag);
% Plot of aPO2x as a function of RPO2x
figure(8)
plot(r(1),a(2));
% Plot of aPO2y as a function of RPO2y
figure(9)
plot(r(2),a(2));
% Plot of VPO2y as a function of RPO2y
figure(10)
aNO2mag=sqrt(aN(1,i)^2+aN(2,i)^2);
plot(t2,aNO2mag); error MATLAB Answers — New Questions