Calculating the aortic flow downstream valve using Womersley and 3-element Windkessel model calculations from my FSI results – Why unusual sine waves at the end of flow curve?
So I have some aortic valve FSI results and I want to examine these results by modelling Womersley flow and using a 3-element Windkessel model in series to it (both downstream of the valve).
I am using the pressure (at the STJ) just downstream of my valve for the calculations (P_STJ, provided in the attached csv file).
I calculate the Womersley Impedance as according to literature (https://leifh.folk.ntnu.no/teaching/tkt4150/._main023.html) and it is connected to a 3 element windkessel model in series (as you can see in the code, with the values provided).
I perform Fourier transform on the pressure data and then divide it by total impedance to get the flow. However, as you can see when running the code (and attached image), that there is a discrepancy in values between the FSI values, that is approximately equal to the amplitude of that unusual sine wave at the end of the flow curve.
Am I doing something wrong? Should I attempt another method than fourier transform and series? Any recommendations?
Thank you in advance.So I have some aortic valve FSI results and I want to examine these results by modelling Womersley flow and using a 3-element Windkessel model in series to it (both downstream of the valve).
I am using the pressure (at the STJ) just downstream of my valve for the calculations (P_STJ, provided in the attached csv file).
I calculate the Womersley Impedance as according to literature (https://leifh.folk.ntnu.no/teaching/tkt4150/._main023.html) and it is connected to a 3 element windkessel model in series (as you can see in the code, with the values provided).
I perform Fourier transform on the pressure data and then divide it by total impedance to get the flow. However, as you can see when running the code (and attached image), that there is a discrepancy in values between the FSI values, that is approximately equal to the amplitude of that unusual sine wave at the end of the flow curve.
Am I doing something wrong? Should I attempt another method than fourier transform and series? Any recommendations?
Thank you in advance. So I have some aortic valve FSI results and I want to examine these results by modelling Womersley flow and using a 3-element Windkessel model in series to it (both downstream of the valve).
I am using the pressure (at the STJ) just downstream of my valve for the calculations (P_STJ, provided in the attached csv file).
I calculate the Womersley Impedance as according to literature (https://leifh.folk.ntnu.no/teaching/tkt4150/._main023.html) and it is connected to a 3 element windkessel model in series (as you can see in the code, with the values provided).
I perform Fourier transform on the pressure data and then divide it by total impedance to get the flow. However, as you can see when running the code (and attached image), that there is a discrepancy in values between the FSI values, that is approximately equal to the amplitude of that unusual sine wave at the end of the flow curve.
Am I doing something wrong? Should I attempt another method than fourier transform and series? Any recommendations?
Thank you in advance. aortic flow, womersley flow, windkessel model, mathematical modelling, lumped parameter modelling, frequency domain, fourier transform, fourier series, fluid mechanics MATLAB Answers — New Questions