How to remove DC component in FFT?
I succesfully plotted my FFT with MATLAB discussion help. Now I could not remove the DC component at 0Hz. Which shows me a very high amplitude. Can any one suggest me an idea?
data1 = xlsread(‘Reading 1.xlsx’) ; %Loading Sensor data from Excel file
t = data1 (1:512,2); %Selecting Time vector
s = data1 (1:512,3); %Selecting Z axis vibrations
L = numel(t); %Signal length
Ts = mean(diff(t)); %Sampling interval
Fs = 1/Ts; %Sampling frequency
Fn = Fs/2; %Nyquist frequency
FTs = fft(s)/L; %Fast fourier transform (s- data)
Fv = linspace(0,1, fix(L/2)+1)*Fn; %Frequency vector
Iv = 1:numel(Fv); %Index vector
subplot(2, 1, 1); %plotting top pane
plot(t,s); %Acceleration vs time
set(gca,’xlim’,[1 50]); %Scale to fit
grid; %Grids on
title (‘Acceleration vs time’);
xlabel(‘time(s)’);
ylabel(‘Acceleration’);
subplot(2, 1, 2); %Plotting bottom pane
plot(Fv, abs(FTs(Iv))*2,’red’); %FFT – Amplitude vs Frequency
grid
title (‘Fast fourier transform’);
xlabel(‘Frequency (Hz)’);
ylabel (‘Amplitude (m)’);I succesfully plotted my FFT with MATLAB discussion help. Now I could not remove the DC component at 0Hz. Which shows me a very high amplitude. Can any one suggest me an idea?
data1 = xlsread(‘Reading 1.xlsx’) ; %Loading Sensor data from Excel file
t = data1 (1:512,2); %Selecting Time vector
s = data1 (1:512,3); %Selecting Z axis vibrations
L = numel(t); %Signal length
Ts = mean(diff(t)); %Sampling interval
Fs = 1/Ts; %Sampling frequency
Fn = Fs/2; %Nyquist frequency
FTs = fft(s)/L; %Fast fourier transform (s- data)
Fv = linspace(0,1, fix(L/2)+1)*Fn; %Frequency vector
Iv = 1:numel(Fv); %Index vector
subplot(2, 1, 1); %plotting top pane
plot(t,s); %Acceleration vs time
set(gca,’xlim’,[1 50]); %Scale to fit
grid; %Grids on
title (‘Acceleration vs time’);
xlabel(‘time(s)’);
ylabel(‘Acceleration’);
subplot(2, 1, 2); %Plotting bottom pane
plot(Fv, abs(FTs(Iv))*2,’red’); %FFT – Amplitude vs Frequency
grid
title (‘Fast fourier transform’);
xlabel(‘Frequency (Hz)’);
ylabel (‘Amplitude (m)’); I succesfully plotted my FFT with MATLAB discussion help. Now I could not remove the DC component at 0Hz. Which shows me a very high amplitude. Can any one suggest me an idea?
data1 = xlsread(‘Reading 1.xlsx’) ; %Loading Sensor data from Excel file
t = data1 (1:512,2); %Selecting Time vector
s = data1 (1:512,3); %Selecting Z axis vibrations
L = numel(t); %Signal length
Ts = mean(diff(t)); %Sampling interval
Fs = 1/Ts; %Sampling frequency
Fn = Fs/2; %Nyquist frequency
FTs = fft(s)/L; %Fast fourier transform (s- data)
Fv = linspace(0,1, fix(L/2)+1)*Fn; %Frequency vector
Iv = 1:numel(Fv); %Index vector
subplot(2, 1, 1); %plotting top pane
plot(t,s); %Acceleration vs time
set(gca,’xlim’,[1 50]); %Scale to fit
grid; %Grids on
title (‘Acceleration vs time’);
xlabel(‘time(s)’);
ylabel(‘Acceleration’);
subplot(2, 1, 2); %Plotting bottom pane
plot(Fv, abs(FTs(Iv))*2,’red’); %FFT – Amplitude vs Frequency
grid
title (‘Fast fourier transform’);
xlabel(‘Frequency (Hz)’);
ylabel (‘Amplitude (m)’); dc, fft, amplitude MATLAB Answers — New Questions