Assistance Needed: Simulating Power-Exponent-Phase Vortex Beam (PEPVB) Propagation in Oceanic Turbulence
I am attempting to simulate the propagation characteristics of the Power-Exponent-Phase Vortex Beam (PEPVB) in oceanic turbulence based on the theoretical model provided in the paper Propagation properties of rotationally-symmetric power-exponent-phase vortex beam through oceanic turbulence. The model uses the extended Huygens-Fresnel diffraction integral and oceanic turbulence theory, and I’m trying to implement this in MATLAB.
I have followed the mathematical formulas provided in section 2 of the paper, particularly equations (1) to (8), which define the electric field and cross-spectral density for the PEPVB passing through turbulence. However, despite various attempts, I haven’t been able to get the simulation to work as expected.
The first image shows the results I generated using my own code, while the second image shows the results provided by the authors of the PEPVB study. The differences between these results are confusing me, especially regarding the implementation of the electric field formulas and how to handle the oceanic turbulence parameters, such as the rate of dissipation of turbulence kinetic energy (ε), the temperature-salinity contribution ratio (ω), and the dissipation rate of the mean-squared temperature (χT).
Could anyone with experience in PEPVB or similar simulations in MATLAB help me check my code or provide working examples? Any help would be greatly appreciated!
Thank you for your time and assistanceI am attempting to simulate the propagation characteristics of the Power-Exponent-Phase Vortex Beam (PEPVB) in oceanic turbulence based on the theoretical model provided in the paper Propagation properties of rotationally-symmetric power-exponent-phase vortex beam through oceanic turbulence. The model uses the extended Huygens-Fresnel diffraction integral and oceanic turbulence theory, and I’m trying to implement this in MATLAB.
I have followed the mathematical formulas provided in section 2 of the paper, particularly equations (1) to (8), which define the electric field and cross-spectral density for the PEPVB passing through turbulence. However, despite various attempts, I haven’t been able to get the simulation to work as expected.
The first image shows the results I generated using my own code, while the second image shows the results provided by the authors of the PEPVB study. The differences between these results are confusing me, especially regarding the implementation of the electric field formulas and how to handle the oceanic turbulence parameters, such as the rate of dissipation of turbulence kinetic energy (ε), the temperature-salinity contribution ratio (ω), and the dissipation rate of the mean-squared temperature (χT).
Could anyone with experience in PEPVB or similar simulations in MATLAB help me check my code or provide working examples? Any help would be greatly appreciated!
Thank you for your time and assistance I am attempting to simulate the propagation characteristics of the Power-Exponent-Phase Vortex Beam (PEPVB) in oceanic turbulence based on the theoretical model provided in the paper Propagation properties of rotationally-symmetric power-exponent-phase vortex beam through oceanic turbulence. The model uses the extended Huygens-Fresnel diffraction integral and oceanic turbulence theory, and I’m trying to implement this in MATLAB.
I have followed the mathematical formulas provided in section 2 of the paper, particularly equations (1) to (8), which define the electric field and cross-spectral density for the PEPVB passing through turbulence. However, despite various attempts, I haven’t been able to get the simulation to work as expected.
The first image shows the results I generated using my own code, while the second image shows the results provided by the authors of the PEPVB study. The differences between these results are confusing me, especially regarding the implementation of the electric field formulas and how to handle the oceanic turbulence parameters, such as the rate of dissipation of turbulence kinetic energy (ε), the temperature-salinity contribution ratio (ω), and the dissipation rate of the mean-squared temperature (χT).
Could anyone with experience in PEPVB or similar simulations in MATLAB help me check my code or provide working examples? Any help would be greatly appreciated!
Thank you for your time and assistance optical communication, laser beams, angular momentum MATLAB Answers — New Questions