End-to-end Stable Diffusion test on Azure NC A100/H100 MIG
You’re welcome to follow my GitHub repo and give it a star:https://github.com/xinyuwei-david/david-share.git
E2E Stable Diffusion on A100 MIG
A100/H100 are High end Training GPU, which could also work as Inference. In order to save compute power and GPU memory, We could use NVIDIA Multi-Instance GPU (MIG), then we could run Stable Diffusion on MIG.
I do the test on Azure NC A100 VM.
Config MIG
Enable MIG on the first physical GPU.
root@david1a100:~# nvidia-smi -i 0 -mig 1
After the VM reboot, MIG has been enabled.
Lists all available GPU MIG profiles:
#nvidia-smi mig -lgip
At this moment, we need to calculate how to maximise utilize the GPU resource and meet the compute power and GPU memory for SD.
I divide A100 to four parts: ID 14×3 and ID 20×1
root@david1a100:~# sudo nvidia-smi mig -cgi 14,14,14,20 -C
Successfully created GPU instance ID 5 on GPU 0 using profile MIG 2g.20gb (ID 14)
Successfully created compute instance ID 0 on GPU 0 GPU instance ID 5 using profile MIG 2g.20gb (ID 1)
Successfully created GPU instance ID 3 on GPU 0 using profile MIG 2g.20gb (ID 14)
Successfully created compute instance ID 0 on GPU 0 GPU instance ID 3 using profile MIG 2g.20gb (ID 1)
Successfully created GPU instance ID 4 on GPU 0 using profile MIG 2g.20gb (ID 14)
Successfully created compute instance ID 0 on GPU 0 GPU instance ID 4 using profile MIG 2g.20gb (ID 1)
Successfully created GPU instance ID 13 on GPU 0 using profile MIG 1g.10gb+me (ID 20)
Successfully created compute instance ID 0 on GPU 0 GPU instance ID 13 using profile MIG 1g.10gb (ID 0)
After reboot the VM, CPU MIG configuration will be lost, so I need to setup bash script.
#vi /usr/local/bin/setup_mig.sh
!/bin/bash
nvidia-smi -i 0 -mig 1
sudo nvidia-smi mig -dgi
sudo nvidia-smi mig -cgi 14,14,14,20 -C
Grant execute permission:
chmod +x /usr/local/bin/setup_mig.sh
Create a system service:
vi /etc/systemd/system/setup_mig.service
[Unit]
Description=Setup NVIDIA MIG Instances
After=default.target
[Service]
Type=oneshot
ExecStart=/usr/local/bin/setup_mig.sh
[Install]
WantedBy=default.target
Enable and start setup_mig.service:
sudo systemctl daemon-reload
sudo systemctl enable setup_mig.service
sudo systemctl status setup_mig.service
Prepare MIG Container environment
Install Docker and NVIDIA Container Toolkit on VM
sudo apt-get update
sudo apt-get install -y docker.io
sudo apt-get install -y aptitude
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add –
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
sudo apt-get update
sudo aptitude install -y nvidia-docker2
sudo systemctl restart docker
sudo aptitude install -y nvidia-container-toolkit
sudo systemctl restart docker
Configure create Container script on VM
#vi createcontainer.sh
#!/bin/bash
# 容器名称数组
CONTAINER_NAMES=(“mig1_tensorrt_container” “mig2_tensorrt_container” “mig3_tensorrt_container” “mig4_tensorrt_container”)
# 删除已有的容器
for CONTAINER in “${CONTAINER_NAMES[@]}”; do
if [ “$(sudo docker ps -a -q -f name=$CONTAINER)” ]; then
echo “Stopping and removing container: $CONTAINER”
sudo docker stop $CONTAINER
sudo docker rm $CONTAINER
fi
done
# 获取MIG设备的UUID
MIG_UUIDS=$(nvidia-smi -L | grep ‘MIG’ | awk -F ‘UUID: ‘ ‘{print $2}’ | awk -F ‘)’ ‘{print $1}’)
UUID_ARRAY=($MIG_UUIDS)
# 检查是否获取到足够的MIG设备UUID
if [ ${#UUID_ARRAY[@]} -lt 4 ]; then
echo “Error: Not enough MIG devices found.”
exit 1
fi
# 启动容器
sudo docker run –gpus ‘”device=’${UUID_ARRAY[0]}'”‘ -v /mig1:/mnt/mig1 -p 8081:80 -d –name mig1_tensorrt_container nvcr.io/nvidia/pytorch:24.05-py3 tail -f /dev/null
sudo docker run –gpus ‘”device=’${UUID_ARRAY[1]}'”‘ -v /mig2:/mnt/mig2 -p 8082:80 -d –name mig2_tensorrt_container nvcr.io/nvidia/pytorch:24.05-py3 tail -f /dev/null
sudo docker run –gpus ‘”device=’${UUID_ARRAY[2]}'”‘ -v /mig3:/mnt/mig3 -p 8083:80 -d –name mig3_tensorrt_container nvcr.io/nvidia/pytorch:24.05-py3 tail -f /dev/null
sudo docker run –gpus ‘”device=’${UUID_ARRAY[3]}'”‘ -v /mig4:/mnt/mig4 -p 8084:80 -d –name mig4_tensorrt_container nvcr.io/nvidia/pytorch:24.05-py3 tail -f /dev/null
# 打印容器状态
sudo docker ps
sudo ufw allow 8081
sudo ufw allow 8082
sudo ufw allow 8083
sudo ufw allow 8084
sudo ufw reload
Check container is accessible from outside.
In container, start 80 listener:
root@david1a100:~# sudo docker exec -it mig1_tensorrt_container /bin/bash
root@b6abf5bf48ae:/workspace# python3 -m http.server 80
Serving HTTP on 0.0.0.0 port 80 (http://0.0.0.0:80/) …
167.220.233.184 – – [23/Aug/2024 10:54:47] “GET / HTTP/1.1” 200 –
Curl from my laptop:
(base) PS C:Usersxinyuwei> curl http://20.5.**.**:8081
StatusCode : 200
StatusDescription : OK
Content : <!DOCTYPE HTML PUBLIC “-//W3C//DTD HTML 4.01//EN” “http://www.w3.org/TR/html4/strict.dtd“>
<html>
<head>
<meta http-equiv=”Content-Type” content=”text/html; charset=utf-8″>
<title>Directory listing fo…
RawContent : HTTP/1.0 200 OK
Content-Length: 594
Content-Type: text/html; charset=utf-8
Date: Fri, 23 Aug 2024 10:54:47 GMT
Server: SimpleHTTP/0.6 Python/3.10.12
In container, ping google.com:
root@david1a100:~#sudo docker exec -it mig1_tensorrt_container /bin/bash
root@b6abf5bf48ae:/workspace# pip install ping3
root@b6abf5bf48ae:/workspace# ping3 www.google.com
ping ‘www.google.com‘ … 2ms
ping ‘www.google.com‘ … 1ms
ping ‘www.google.com‘ … 1ms
ping ‘www.google.com‘ … 1ms
Related useful commands.
Do SD inference test in Container.
Check tensorrt version in container:
root@david1a100:/workspace# pip show tensorrt
Name: tensorrt
Version: 10.2.0
Summary: A high performance deep learning inference library
Home-page: https://developer.nvidia.com/tensorrt
Author: NVIDIA Corporation
Author-email:
License: Proprietary
Location: /usr/local/lib/python3.10/dist-packages
Requires:
Required-by:
Do SD test via github examples, in container:
git clone –branch release/10.2 –single-branch https://github.com/NVIDIA/TensorRT.git
cd TensorRT/demo/Diffusion
pip3 install -r requirements.txt
Genarate inmage 1024*1024 image from test.
python3 demo_txt2img.py “a beautiful photograph of Mt. Fuji during cherry blossom” –hf-token=$HF_TOKEN
We could check the speed of generating image in different:
In MIG1 container, which has 2 GPC and 20G memory:
In mig4 container, which has 2 GPC and 20G memory:
Check The output image is as following, copy it to VM and download it.
#cp ./output/* /mig1
Compare Int8 inference speed and quality on H100 GPU
Tested Stable Diffusion XL1.0 on a single H100 to verify the effects of int8. NVIDIA claims that on H100, INT8 is optimised over A100.
#python3 demo_txt2img_xl.py “a photo of an astronaut riding a horse on mars” –hf-token=$HF_TOKEN –version=xl-1.0
Image generation effect:
Use SDXL & INT8 AMMO quantization:
python3 demo_txt2img_xl.py “a photo of an astronaut riding a horse on mars” –version xl-1.0 –onnx-dir onnx-sdxl –engine-dir engine-sdxl –int8
After executing the above command, 8-bit quantisation of the model will be performed first.
Check generated image:
We see that the quality of the generated images is the same, and the file sizes are almost identical as well.
We observe that the inference speed of INT8 increased by 20% compared to FP16.
Microsoft Tech Community – Latest Blogs –Read More