Email: helpdesk@telkomuniversity.ac.id

This Portal for internal use only!

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • Visual Paradigm
  • IBM
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Windows
      • Office
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Categories
  • Microsoft
    • Microsoft Apps
    • Office
    • Operating System
    • VLS
    • Developer Tools
    • Productivity Tools
    • Database
    • AI + Machine Learning
    • Middleware System
    • Learning Services
    • Analytics
    • Networking
    • Compute
    • Security
    • Internet Of Things
  • Adobe
  • Matlab
  • Google
  • Visual Paradigm
  • WordPress
    • Plugin WP
    • Themes WP
  • Opensource
  • Others
More Categories Less Categories
  • Get Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • My Account
    • Download
    • Cart
    • Checkout
    • Login
  • About Us
    • Contact
    • Forum
    • Frequently Questions
    • Privacy Policy
  • Forum
    • News
      • Category
      • News Tag

iconTicket Service Desk

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • Visual Paradigm
  • IBM
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Windows
      • Office
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Menu
  • Home
    • Download Application Package Repository Telkom University
    • Application Package Repository Telkom University
    • Download Official License Telkom University
    • Download Installer Application Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • All Pack
    • Microsoft
      • Operating System
      • Productivity Tools
      • Developer Tools
      • Database
      • AI + Machine Learning
      • Middleware System
      • Networking
      • Compute
      • Security
      • Analytics
      • Internet Of Things
      • Learning Services
    • Microsoft Apps
      • VLS
    • Adobe
    • Matlab
    • WordPress
      • Themes WP
      • Plugin WP
    • Google
    • Opensource
    • Others
  • My account
    • Download
    • Get Pack
    • Cart
    • Checkout
  • News
    • Category
    • News Tag
  • Forum
  • About Us
    • Privacy Policy
    • Frequently Questions
    • Contact
Home/Matlab/Find real valued parameters of a complex equation/model by using optimization or curve fitting.

Find real valued parameters of a complex equation/model by using optimization or curve fitting.

/ 2025-01-08
Find real valued parameters of a complex equation/model by using optimization or curve fitting.
Matlab

I am trying to replicate finding the optimized parameters of a Lorentz model defined in the paper titled, "EXTRACTION OF EFFECTIVE METAMATERIAL PARAMETERS BY PARAMETER FITTING OF DISPERSIVE MODEL" (linked here). I’ve provided the equation and table of paramters below:

I’ve tried the curve fitting tool and get different results especially when I try to change the bounds. Sometimes I am able to get paramters that match the table above but my confidence in repeatbility isn’t high. I’ve also tried scripting code to use the "fittype", "lsqnonlin", or "fminsearch" but also get different answers as well. In the code below, I’m comparing the fit to the real and imaginary parts of the Lorentz model. The fit to the real data is way off and even though the fit to the imaginary values looks qualitatively good. For the fit to the imaginary part, I get different values for the estimated parameters compared to what’s reported in the paper.

%% Parameters in Table
e_inf = 1.62;
wp = 2*pi*14.63*1e9; % GHz
vc = 30.69*1e6; %MHz
mu_s = 1.26;
mu_inf = 1.12;
wo = 2*pi*9.67*1e9; % GHz
delta = 1.24*1e9; % GHz

%%
fo = [7:0.01:12].*1e9; % GHz

w = 2*pi*fo;

mu_eff = mu_inf + ((mu_s – mu_inf)*wo.^2)./(wo.^2 + 1i*w*delta – w.^2); % equation in paper / Lorentz model

real_mu_eff = real(mu_eff);

imag_mu_eff = imag(mu_eff);

x = fo;
y = real_mu_eff;
x2 = fo;
y2 = imag_mu_eff;

myfittype = fittype("real(a+((b-a)*(2*pi*1e9*c).^2)./((2*pi*1e9*c).^2+1i*2*pi*x*d*1e9-x.^2))",…
dependent="y",independent="x",…
coefficients=["a" "b" "c" "d"])

myfit = fit(x’,y’,myfittype)

figure
plot(myfit,x,y)

myfittype2 = fittype("imag(a2+((b2-a2)*(2*pi*1e9*c2).^2)./((2*pi*1e9*c2).^2+1i*2*pi*x2*d2*1e9-x2.^2))",…
dependent="y2",independent="x2",…
coefficients=["a2" "b2" "c2" "d2"])

myfit2 = fit(x2′,y2′,myfittype2)

figure
plot(myfit2,x2,y2)

The results I was expecting were: a=1.12, b=1.26, c=9.67, and d=1.24. I ‘ve atttached my attempts with using "lsqnonlin", "lsqcurvefit", and "fminsearch"; however I didn’t have success in using those methods either. What is best way to find the parameters of the Lorentz model to get the values in the table above?I am trying to replicate finding the optimized parameters of a Lorentz model defined in the paper titled, "EXTRACTION OF EFFECTIVE METAMATERIAL PARAMETERS BY PARAMETER FITTING OF DISPERSIVE MODEL" (linked here). I’ve provided the equation and table of paramters below:

I’ve tried the curve fitting tool and get different results especially when I try to change the bounds. Sometimes I am able to get paramters that match the table above but my confidence in repeatbility isn’t high. I’ve also tried scripting code to use the "fittype", "lsqnonlin", or "fminsearch" but also get different answers as well. In the code below, I’m comparing the fit to the real and imaginary parts of the Lorentz model. The fit to the real data is way off and even though the fit to the imaginary values looks qualitatively good. For the fit to the imaginary part, I get different values for the estimated parameters compared to what’s reported in the paper.

%% Parameters in Table
e_inf = 1.62;
wp = 2*pi*14.63*1e9; % GHz
vc = 30.69*1e6; %MHz
mu_s = 1.26;
mu_inf = 1.12;
wo = 2*pi*9.67*1e9; % GHz
delta = 1.24*1e9; % GHz

%%
fo = [7:0.01:12].*1e9; % GHz

w = 2*pi*fo;

mu_eff = mu_inf + ((mu_s – mu_inf)*wo.^2)./(wo.^2 + 1i*w*delta – w.^2); % equation in paper / Lorentz model

real_mu_eff = real(mu_eff);

imag_mu_eff = imag(mu_eff);

x = fo;
y = real_mu_eff;
x2 = fo;
y2 = imag_mu_eff;

myfittype = fittype("real(a+((b-a)*(2*pi*1e9*c).^2)./((2*pi*1e9*c).^2+1i*2*pi*x*d*1e9-x.^2))",…
dependent="y",independent="x",…
coefficients=["a" "b" "c" "d"])

myfit = fit(x’,y’,myfittype)

figure
plot(myfit,x,y)

myfittype2 = fittype("imag(a2+((b2-a2)*(2*pi*1e9*c2).^2)./((2*pi*1e9*c2).^2+1i*2*pi*x2*d2*1e9-x2.^2))",…
dependent="y2",independent="x2",…
coefficients=["a2" "b2" "c2" "d2"])

myfit2 = fit(x2′,y2′,myfittype2)

figure
plot(myfit2,x2,y2)

The results I was expecting were: a=1.12, b=1.26, c=9.67, and d=1.24. I ‘ve atttached my attempts with using "lsqnonlin", "lsqcurvefit", and "fminsearch"; however I didn’t have success in using those methods either. What is best way to find the parameters of the Lorentz model to get the values in the table above? I am trying to replicate finding the optimized parameters of a Lorentz model defined in the paper titled, "EXTRACTION OF EFFECTIVE METAMATERIAL PARAMETERS BY PARAMETER FITTING OF DISPERSIVE MODEL" (linked here). I’ve provided the equation and table of paramters below:

I’ve tried the curve fitting tool and get different results especially when I try to change the bounds. Sometimes I am able to get paramters that match the table above but my confidence in repeatbility isn’t high. I’ve also tried scripting code to use the "fittype", "lsqnonlin", or "fminsearch" but also get different answers as well. In the code below, I’m comparing the fit to the real and imaginary parts of the Lorentz model. The fit to the real data is way off and even though the fit to the imaginary values looks qualitatively good. For the fit to the imaginary part, I get different values for the estimated parameters compared to what’s reported in the paper.

%% Parameters in Table
e_inf = 1.62;
wp = 2*pi*14.63*1e9; % GHz
vc = 30.69*1e6; %MHz
mu_s = 1.26;
mu_inf = 1.12;
wo = 2*pi*9.67*1e9; % GHz
delta = 1.24*1e9; % GHz

%%
fo = [7:0.01:12].*1e9; % GHz

w = 2*pi*fo;

mu_eff = mu_inf + ((mu_s – mu_inf)*wo.^2)./(wo.^2 + 1i*w*delta – w.^2); % equation in paper / Lorentz model

real_mu_eff = real(mu_eff);

imag_mu_eff = imag(mu_eff);

x = fo;
y = real_mu_eff;
x2 = fo;
y2 = imag_mu_eff;

myfittype = fittype("real(a+((b-a)*(2*pi*1e9*c).^2)./((2*pi*1e9*c).^2+1i*2*pi*x*d*1e9-x.^2))",…
dependent="y",independent="x",…
coefficients=["a" "b" "c" "d"])

myfit = fit(x’,y’,myfittype)

figure
plot(myfit,x,y)

myfittype2 = fittype("imag(a2+((b2-a2)*(2*pi*1e9*c2).^2)./((2*pi*1e9*c2).^2+1i*2*pi*x2*d2*1e9-x2.^2))",…
dependent="y2",independent="x2",…
coefficients=["a2" "b2" "c2" "d2"])

myfit2 = fit(x2′,y2′,myfittype2)

figure
plot(myfit2,x2,y2)

The results I was expecting were: a=1.12, b=1.26, c=9.67, and d=1.24. I ‘ve atttached my attempts with using "lsqnonlin", "lsqcurvefit", and "fminsearch"; however I didn’t have success in using those methods either. What is best way to find the parameters of the Lorentz model to get the values in the table above? optimization, curve fitting, physics, electrical, material characterization, debye, lorentz MATLAB Answers — New Questions

​

Tags: matlab

Share this!

Related posts

External Mode Connection Issue with C2000 LaunchPad and Speedgoat System
2025-05-17

External Mode Connection Issue with C2000 LaunchPad and Speedgoat System

how to validate mscohere?
2025-05-17

how to validate mscohere?

Transfer history to MATLAB 2025a
2025-05-17

Transfer history to MATLAB 2025a

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Search

Categories

  • Matlab
  • Microsoft
  • News
  • Other
Application Package Repository Telkom University

Tags

matlab microsoft opensources
Application Package Download License

Application Package Download License

Adobe
Google for Education
IBM
Matlab
Microsoft
Wordpress
Visual Paradigm
Opensource

Sign Up For Newsletters

Be the First to Know. Sign up for newsletter today

Application Package Repository Telkom University

Portal Application Package Repository Telkom University, for internal use only, empower civitas academica in study and research.

Information

  • Telkom University
  • About Us
  • Contact
  • Forum Discussion
  • FAQ
  • Helpdesk Ticket

Contact Us

  • Ask: Any question please read FAQ
  • Mail: helpdesk@telkomuniversity.ac.id
  • Call: +62 823-1994-9941
  • WA: +62 823-1994-9943
  • Site: Gedung Panambulai. Jl. Telekomunikasi

Copyright © Telkom University. All Rights Reserved. ch

  • FAQ
  • Privacy Policy
  • Term

This Application Package for internal Telkom University only (students and employee). Chiers... Dismiss