Email: helpdesk@telkomuniversity.ac.id

This Portal for internal use only!

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • IBM
  • Visual Paradigm
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Office
      • Windows
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Categories
  • Microsoft
    • Microsoft Apps
    • Office
    • Operating System
    • VLS
    • Developer Tools
    • Productivity Tools
    • Database
    • AI + Machine Learning
    • Middleware System
    • Learning Services
    • Analytics
    • Networking
    • Compute
    • Security
    • Internet Of Things
  • Adobe
  • Matlab
  • Google
  • Visual Paradigm
  • WordPress
    • Plugin WP
    • Themes WP
  • Opensource
  • Others
More Categories Less Categories
  • Get Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • My Account
    • Download
    • Cart
    • Checkout
    • Login
  • About Us
    • Contact
    • Forum
    • Frequently Questions
    • Privacy Policy
  • Forum
    • News
      • Category
      • News Tag

iconTicket Service Desk

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • IBM
  • Visual Paradigm
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Office
      • Windows
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Menu
  • Home
    • Download Application Package Repository Telkom University
    • Application Package Repository Telkom University
    • Download Official License Telkom University
    • Download Installer Application Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • All Pack
    • Microsoft
      • Operating System
      • Productivity Tools
      • Developer Tools
      • Database
      • AI + Machine Learning
      • Middleware System
      • Networking
      • Compute
      • Security
      • Analytics
      • Internet Of Things
      • Learning Services
    • Microsoft Apps
      • VLS
    • Adobe
    • Matlab
    • WordPress
      • Themes WP
      • Plugin WP
    • Google
    • Opensource
    • Others
  • My account
    • Download
    • Get Pack
    • Cart
    • Checkout
  • News
    • Category
    • News Tag
  • Forum
  • About Us
    • Privacy Policy
    • Frequently Questions
    • Contact
Home/Matlab/How can I save an output of a customized step function in Reinforcement learning?

How can I save an output of a customized step function in Reinforcement learning?

PuTI / 2025-01-20
How can I save an output of a customized step function in Reinforcement learning?
Matlab News

I have created a code for training a DQN agent with a customized enviroment using step and reset function following the example in the docuemntation. However I would like to be able to store the info about the state in the step function to investigate them after the training and after simulating the agent in the enviroment. I only know how to get the info about action and observation but I would kike also the state that now is a field of the structure LoggedSignals. I attach the main code and the step function and the reset function.
clear
clc
close all
load(‘ws_lorenz’,’tot_T’)
%% Create Environment Interface
% rlNumericSpec([n,1]) specifies that the state variables are n and can
% take any value in R.
obsInfo = rlNumericSpec([1 1]);
obsInfo.Name = ‘reactivity’;
obsInfo.Description = ‘r’;

u_1 = [0.1 2];
my_cell = reshape(num2cell(u_1),1,length(u_1));
actInfo = rlFiniteSetSpec(my_cell);
actInfo.Name = ‘System Action’;
% now we are ready to define the environment.
%doc rlSimulinkEnv Create reinforcement learning environment using dynamic model implemented in Simulink
%doc rlFunctionEnv Specify custom reinforcement learning environment dynamics using functions
env = rlFunctionEnv(obsInfo,actInfo,’my_stepfun’,’my_resetfun’);
% Fix the random generator seed for reproducibility.
rng(0)

%% Create DQN agent
%A DQN agent approximates the long-term reward given observations and
%actions using a critic value function representation.
%To create the critic, first create a deep neural network with the state as
% an input and as many outputs as the different values the control action
% can take (this is the size of the cell). The idea here is to obtain a
% different parametric approximator of the Q-factor for each value of u.
net = [
featureInputLayer(obsInfo.Dimension(1))
fullyConnectedLayer(256)
reluLayer
fullyConnectedLayer(length(actInfo.Elements))
];
net = dlnetwork(net);
summary(net)

% Plot network
plot(net)
% Specify options for the critic. The LearnRate is key, the higher it is, the
% faster the training but potentially the less accurate the results.
criticOptions = rlOptimizerOptions( …
LearnRate=1e-3, …
GradientThreshold=1);

%specify the action and observation info for the critic, which you obtain
%from the environment interface.
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
% A vector Q-value Function is a neural network allowing to obtain a
% different parametric approximator of the Q-factor for each value of u.
critic = rlVectorQValueFunction(net,obsInfo,actInfo);

%To create the DQN agent, first specify the DQN agent options using rlDQNAgentOptions.
agentOpts = rlDQNAgentOptions(…
‘UseDoubleDQN’,true, …
‘TargetUpdateMethod’,"periodic", …
‘TargetUpdateFrequency’,10, …
‘ExperienceBufferLength’,100000, …
‘DiscountFactor’,0.95, …
‘MiniBatchSize’,128, …
CriticOptimizerOptions=criticOptions);
agentOpts.EpsilonGreedyExploration.Epsilon = 0.8;
agentOpts.EpsilonGreedyExploration.EpsilonDecay = 1e-3;
agentOpts.EpsilonGreedyExploration.EpsilonMin = 0.1;

%Then, create the DQN agent using the specified critic representation
%and agent options.
agent = rlDQNAgent(critic,agentOpts);

%% Train Agent
%To train the agent, first specify the training options.
%Run one training session containing at most 1000 episodes,
%with each episode lasting at most 500 time steps.
%Display the training progress in the Episode Manager dialog box
%and disable the command line display (set the Verbose option to false).
%Stop training when the agent receives an moving average cumulative reward
%greater than 15000.
trainOpts = rlTrainingOptions(…
‘MaxEpisodes’, 10000, … % if the number of steps per episode is increased, this could be decreased.
‘MaxStepsPerEpisode’, tot_T, … % this number of steps per episode might be insufficient in general
‘Verbose’, false, …
‘Plots’,’training-progress’,…
‘StopTrainingCriteria’,’AverageReward’,…
‘StopTrainingValue’,1, …
UseParallel=false);

%% Train the agent using the train function.
trainingStats = train(agent,env,trainOpts);

%% Simulate DQN Agent
%To validate the performance of the trained agent, simulate it within the
% environment.
experience = sim(env,agent);
totalReward = sum(experience.Reward)
figure(1)
x = squeeze(experience.Action.SystemAction.Data(:,1,:));%%1x1x258
plot(x’)
plot(squeeze(experience.Action.SystemAction.Data));
title(‘Actions Over Time’);
react = squeeze(experience.Observation.reactivity.Data(:,1,:)); %%1x1x259
figure(2)
plot(react’)
title(‘Reactivity Over Time’);
figure(3)
plot(trainingStats.EpisodeIndex, trainingStats.AverageReward);
xlabel(‘Episode’);
ylabel(‘Average Reward’);

function [NextObs,Reward,IsDone,LoggedSignals]…
= my_stepfun(Action,LoggedSignals)
% Custom step function.
%[NextObservation,Reward,IsDone,UpdatedInfo] = myStepFunction(Action,Info)
% This function applies the given action to the environment and evaluates
% the system dynamics for one simulation step.

% Define the environment constants.
% Sample time
Ts = 1;
sig = 1.3;

DF= LoggedSignals.DF ;
L = LoggedSignals.L;
H = LoggedSignals.H;
xi = LoggedSignals.xi;
m = LoggedSignals.m;
n = LoggedSignals.n;
tot_T = LoggedSignals.tot_T;

LoggedSignals.Time = LoggedSignals.Time+Ts;
kk = (1/Ts)*LoggedSignals.Time;

u = Action;

% Unpack the state vector from the logged signals.
x_k = LoggedSignals.State;

% Perform Euler integration.
[t, x] = ode113(@(t,x)my_lorenz_DQN(t,x,L,u, DF, H),[0 Ts],x_k’);
LoggedSignals.State = x(end,:)’;

% compute average state
St = [mean(x(end,1:n),2), mean(x(end,n+1:2*n),2), mean(x(end,2*n+1:3*n),2)];
% compute reactivity (using sig)
r = max(eig((DF(St) + DF(St)’)/2 +sig*xi*H));

% The next observation is the reactivity
NextObs = r;

% Check early termination condition.
[err, ~, ~] = Err_sync(x, t, n, m, 0);

if LoggedSignals.Time >= 0.9*tot_T
LoggedSignals.cum_err = LoggedSignals.cum_err+err;
end

IsDone1 = LoggedSignals.cum_err>(20*eps);
IsDone2 = err>1e-1;

w1 = 1e5;
w2 = 1e2;
if IsDone1==1

Reward = -(tot_T-LoggedSignals.Time)*1e3;

elseif IsDone2==1

Reward = -(tot_T-LoggedSignals.Time)*1e4;

else

Reward = 1 -w1*err – w2*u;
end
IsDone = max(IsDone1,IsDone2) ;

end

function [InitialObservation, LoggedSignal] = my_resetfun()

load(‘reset_ws.mat’,’x0′)
load(‘ws_lorenz’,’DF’,’L’,’H’,’xi’,’n’,’m’,’tot_T’)
x = x0(:,randi(size(x0,2)));
LoggedSignal.State = x;
InitialObservation = 1; %% da cambiare
LoggedSignal.Time = 0;
LoggedSignal.DF = DF;
LoggedSignal.L = L;
LoggedSignal.H = H;
LoggedSignal.xi = xi;
LoggedSignal.m = m;
LoggedSignal.n = n;
LoggedSignal.cum_err = 0;
LoggedSignal.tot_T = tot_T;

endI have created a code for training a DQN agent with a customized enviroment using step and reset function following the example in the docuemntation. However I would like to be able to store the info about the state in the step function to investigate them after the training and after simulating the agent in the enviroment. I only know how to get the info about action and observation but I would kike also the state that now is a field of the structure LoggedSignals. I attach the main code and the step function and the reset function.
clear
clc
close all
load(‘ws_lorenz’,’tot_T’)
%% Create Environment Interface
% rlNumericSpec([n,1]) specifies that the state variables are n and can
% take any value in R.
obsInfo = rlNumericSpec([1 1]);
obsInfo.Name = ‘reactivity’;
obsInfo.Description = ‘r’;

u_1 = [0.1 2];
my_cell = reshape(num2cell(u_1),1,length(u_1));
actInfo = rlFiniteSetSpec(my_cell);
actInfo.Name = ‘System Action’;
% now we are ready to define the environment.
%doc rlSimulinkEnv Create reinforcement learning environment using dynamic model implemented in Simulink
%doc rlFunctionEnv Specify custom reinforcement learning environment dynamics using functions
env = rlFunctionEnv(obsInfo,actInfo,’my_stepfun’,’my_resetfun’);
% Fix the random generator seed for reproducibility.
rng(0)

%% Create DQN agent
%A DQN agent approximates the long-term reward given observations and
%actions using a critic value function representation.
%To create the critic, first create a deep neural network with the state as
% an input and as many outputs as the different values the control action
% can take (this is the size of the cell). The idea here is to obtain a
% different parametric approximator of the Q-factor for each value of u.
net = [
featureInputLayer(obsInfo.Dimension(1))
fullyConnectedLayer(256)
reluLayer
fullyConnectedLayer(length(actInfo.Elements))
];
net = dlnetwork(net);
summary(net)

% Plot network
plot(net)
% Specify options for the critic. The LearnRate is key, the higher it is, the
% faster the training but potentially the less accurate the results.
criticOptions = rlOptimizerOptions( …
LearnRate=1e-3, …
GradientThreshold=1);

%specify the action and observation info for the critic, which you obtain
%from the environment interface.
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
% A vector Q-value Function is a neural network allowing to obtain a
% different parametric approximator of the Q-factor for each value of u.
critic = rlVectorQValueFunction(net,obsInfo,actInfo);

%To create the DQN agent, first specify the DQN agent options using rlDQNAgentOptions.
agentOpts = rlDQNAgentOptions(…
‘UseDoubleDQN’,true, …
‘TargetUpdateMethod’,"periodic", …
‘TargetUpdateFrequency’,10, …
‘ExperienceBufferLength’,100000, …
‘DiscountFactor’,0.95, …
‘MiniBatchSize’,128, …
CriticOptimizerOptions=criticOptions);
agentOpts.EpsilonGreedyExploration.Epsilon = 0.8;
agentOpts.EpsilonGreedyExploration.EpsilonDecay = 1e-3;
agentOpts.EpsilonGreedyExploration.EpsilonMin = 0.1;

%Then, create the DQN agent using the specified critic representation
%and agent options.
agent = rlDQNAgent(critic,agentOpts);

%% Train Agent
%To train the agent, first specify the training options.
%Run one training session containing at most 1000 episodes,
%with each episode lasting at most 500 time steps.
%Display the training progress in the Episode Manager dialog box
%and disable the command line display (set the Verbose option to false).
%Stop training when the agent receives an moving average cumulative reward
%greater than 15000.
trainOpts = rlTrainingOptions(…
‘MaxEpisodes’, 10000, … % if the number of steps per episode is increased, this could be decreased.
‘MaxStepsPerEpisode’, tot_T, … % this number of steps per episode might be insufficient in general
‘Verbose’, false, …
‘Plots’,’training-progress’,…
‘StopTrainingCriteria’,’AverageReward’,…
‘StopTrainingValue’,1, …
UseParallel=false);

%% Train the agent using the train function.
trainingStats = train(agent,env,trainOpts);

%% Simulate DQN Agent
%To validate the performance of the trained agent, simulate it within the
% environment.
experience = sim(env,agent);
totalReward = sum(experience.Reward)
figure(1)
x = squeeze(experience.Action.SystemAction.Data(:,1,:));%%1x1x258
plot(x’)
plot(squeeze(experience.Action.SystemAction.Data));
title(‘Actions Over Time’);
react = squeeze(experience.Observation.reactivity.Data(:,1,:)); %%1x1x259
figure(2)
plot(react’)
title(‘Reactivity Over Time’);
figure(3)
plot(trainingStats.EpisodeIndex, trainingStats.AverageReward);
xlabel(‘Episode’);
ylabel(‘Average Reward’);

function [NextObs,Reward,IsDone,LoggedSignals]…
= my_stepfun(Action,LoggedSignals)
% Custom step function.
%[NextObservation,Reward,IsDone,UpdatedInfo] = myStepFunction(Action,Info)
% This function applies the given action to the environment and evaluates
% the system dynamics for one simulation step.

% Define the environment constants.
% Sample time
Ts = 1;
sig = 1.3;

DF= LoggedSignals.DF ;
L = LoggedSignals.L;
H = LoggedSignals.H;
xi = LoggedSignals.xi;
m = LoggedSignals.m;
n = LoggedSignals.n;
tot_T = LoggedSignals.tot_T;

LoggedSignals.Time = LoggedSignals.Time+Ts;
kk = (1/Ts)*LoggedSignals.Time;

u = Action;

% Unpack the state vector from the logged signals.
x_k = LoggedSignals.State;

% Perform Euler integration.
[t, x] = ode113(@(t,x)my_lorenz_DQN(t,x,L,u, DF, H),[0 Ts],x_k’);
LoggedSignals.State = x(end,:)’;

% compute average state
St = [mean(x(end,1:n),2), mean(x(end,n+1:2*n),2), mean(x(end,2*n+1:3*n),2)];
% compute reactivity (using sig)
r = max(eig((DF(St) + DF(St)’)/2 +sig*xi*H));

% The next observation is the reactivity
NextObs = r;

% Check early termination condition.
[err, ~, ~] = Err_sync(x, t, n, m, 0);

if LoggedSignals.Time >= 0.9*tot_T
LoggedSignals.cum_err = LoggedSignals.cum_err+err;
end

IsDone1 = LoggedSignals.cum_err>(20*eps);
IsDone2 = err>1e-1;

w1 = 1e5;
w2 = 1e2;
if IsDone1==1

Reward = -(tot_T-LoggedSignals.Time)*1e3;

elseif IsDone2==1

Reward = -(tot_T-LoggedSignals.Time)*1e4;

else

Reward = 1 -w1*err – w2*u;
end
IsDone = max(IsDone1,IsDone2) ;

end

function [InitialObservation, LoggedSignal] = my_resetfun()

load(‘reset_ws.mat’,’x0′)
load(‘ws_lorenz’,’DF’,’L’,’H’,’xi’,’n’,’m’,’tot_T’)
x = x0(:,randi(size(x0,2)));
LoggedSignal.State = x;
InitialObservation = 1; %% da cambiare
LoggedSignal.Time = 0;
LoggedSignal.DF = DF;
LoggedSignal.L = L;
LoggedSignal.H = H;
LoggedSignal.xi = xi;
LoggedSignal.m = m;
LoggedSignal.n = n;
LoggedSignal.cum_err = 0;
LoggedSignal.tot_T = tot_T;

end I have created a code for training a DQN agent with a customized enviroment using step and reset function following the example in the docuemntation. However I would like to be able to store the info about the state in the step function to investigate them after the training and after simulating the agent in the enviroment. I only know how to get the info about action and observation but I would kike also the state that now is a field of the structure LoggedSignals. I attach the main code and the step function and the reset function.
clear
clc
close all
load(‘ws_lorenz’,’tot_T’)
%% Create Environment Interface
% rlNumericSpec([n,1]) specifies that the state variables are n and can
% take any value in R.
obsInfo = rlNumericSpec([1 1]);
obsInfo.Name = ‘reactivity’;
obsInfo.Description = ‘r’;

u_1 = [0.1 2];
my_cell = reshape(num2cell(u_1),1,length(u_1));
actInfo = rlFiniteSetSpec(my_cell);
actInfo.Name = ‘System Action’;
% now we are ready to define the environment.
%doc rlSimulinkEnv Create reinforcement learning environment using dynamic model implemented in Simulink
%doc rlFunctionEnv Specify custom reinforcement learning environment dynamics using functions
env = rlFunctionEnv(obsInfo,actInfo,’my_stepfun’,’my_resetfun’);
% Fix the random generator seed for reproducibility.
rng(0)

%% Create DQN agent
%A DQN agent approximates the long-term reward given observations and
%actions using a critic value function representation.
%To create the critic, first create a deep neural network with the state as
% an input and as many outputs as the different values the control action
% can take (this is the size of the cell). The idea here is to obtain a
% different parametric approximator of the Q-factor for each value of u.
net = [
featureInputLayer(obsInfo.Dimension(1))
fullyConnectedLayer(256)
reluLayer
fullyConnectedLayer(length(actInfo.Elements))
];
net = dlnetwork(net);
summary(net)

% Plot network
plot(net)
% Specify options for the critic. The LearnRate is key, the higher it is, the
% faster the training but potentially the less accurate the results.
criticOptions = rlOptimizerOptions( …
LearnRate=1e-3, …
GradientThreshold=1);

%specify the action and observation info for the critic, which you obtain
%from the environment interface.
obsInfo = getObservationInfo(env);
actInfo = getActionInfo(env);
% A vector Q-value Function is a neural network allowing to obtain a
% different parametric approximator of the Q-factor for each value of u.
critic = rlVectorQValueFunction(net,obsInfo,actInfo);

%To create the DQN agent, first specify the DQN agent options using rlDQNAgentOptions.
agentOpts = rlDQNAgentOptions(…
‘UseDoubleDQN’,true, …
‘TargetUpdateMethod’,"periodic", …
‘TargetUpdateFrequency’,10, …
‘ExperienceBufferLength’,100000, …
‘DiscountFactor’,0.95, …
‘MiniBatchSize’,128, …
CriticOptimizerOptions=criticOptions);
agentOpts.EpsilonGreedyExploration.Epsilon = 0.8;
agentOpts.EpsilonGreedyExploration.EpsilonDecay = 1e-3;
agentOpts.EpsilonGreedyExploration.EpsilonMin = 0.1;

%Then, create the DQN agent using the specified critic representation
%and agent options.
agent = rlDQNAgent(critic,agentOpts);

%% Train Agent
%To train the agent, first specify the training options.
%Run one training session containing at most 1000 episodes,
%with each episode lasting at most 500 time steps.
%Display the training progress in the Episode Manager dialog box
%and disable the command line display (set the Verbose option to false).
%Stop training when the agent receives an moving average cumulative reward
%greater than 15000.
trainOpts = rlTrainingOptions(…
‘MaxEpisodes’, 10000, … % if the number of steps per episode is increased, this could be decreased.
‘MaxStepsPerEpisode’, tot_T, … % this number of steps per episode might be insufficient in general
‘Verbose’, false, …
‘Plots’,’training-progress’,…
‘StopTrainingCriteria’,’AverageReward’,…
‘StopTrainingValue’,1, …
UseParallel=false);

%% Train the agent using the train function.
trainingStats = train(agent,env,trainOpts);

%% Simulate DQN Agent
%To validate the performance of the trained agent, simulate it within the
% environment.
experience = sim(env,agent);
totalReward = sum(experience.Reward)
figure(1)
x = squeeze(experience.Action.SystemAction.Data(:,1,:));%%1x1x258
plot(x’)
plot(squeeze(experience.Action.SystemAction.Data));
title(‘Actions Over Time’);
react = squeeze(experience.Observation.reactivity.Data(:,1,:)); %%1x1x259
figure(2)
plot(react’)
title(‘Reactivity Over Time’);
figure(3)
plot(trainingStats.EpisodeIndex, trainingStats.AverageReward);
xlabel(‘Episode’);
ylabel(‘Average Reward’);

function [NextObs,Reward,IsDone,LoggedSignals]…
= my_stepfun(Action,LoggedSignals)
% Custom step function.
%[NextObservation,Reward,IsDone,UpdatedInfo] = myStepFunction(Action,Info)
% This function applies the given action to the environment and evaluates
% the system dynamics for one simulation step.

% Define the environment constants.
% Sample time
Ts = 1;
sig = 1.3;

DF= LoggedSignals.DF ;
L = LoggedSignals.L;
H = LoggedSignals.H;
xi = LoggedSignals.xi;
m = LoggedSignals.m;
n = LoggedSignals.n;
tot_T = LoggedSignals.tot_T;

LoggedSignals.Time = LoggedSignals.Time+Ts;
kk = (1/Ts)*LoggedSignals.Time;

u = Action;

% Unpack the state vector from the logged signals.
x_k = LoggedSignals.State;

% Perform Euler integration.
[t, x] = ode113(@(t,x)my_lorenz_DQN(t,x,L,u, DF, H),[0 Ts],x_k’);
LoggedSignals.State = x(end,:)’;

% compute average state
St = [mean(x(end,1:n),2), mean(x(end,n+1:2*n),2), mean(x(end,2*n+1:3*n),2)];
% compute reactivity (using sig)
r = max(eig((DF(St) + DF(St)’)/2 +sig*xi*H));

% The next observation is the reactivity
NextObs = r;

% Check early termination condition.
[err, ~, ~] = Err_sync(x, t, n, m, 0);

if LoggedSignals.Time >= 0.9*tot_T
LoggedSignals.cum_err = LoggedSignals.cum_err+err;
end

IsDone1 = LoggedSignals.cum_err>(20*eps);
IsDone2 = err>1e-1;

w1 = 1e5;
w2 = 1e2;
if IsDone1==1

Reward = -(tot_T-LoggedSignals.Time)*1e3;

elseif IsDone2==1

Reward = -(tot_T-LoggedSignals.Time)*1e4;

else

Reward = 1 -w1*err – w2*u;
end
IsDone = max(IsDone1,IsDone2) ;

end

function [InitialObservation, LoggedSignal] = my_resetfun()

load(‘reset_ws.mat’,’x0′)
load(‘ws_lorenz’,’DF’,’L’,’H’,’xi’,’n’,’m’,’tot_T’)
x = x0(:,randi(size(x0,2)));
LoggedSignal.State = x;
InitialObservation = 1; %% da cambiare
LoggedSignal.Time = 0;
LoggedSignal.DF = DF;
LoggedSignal.L = L;
LoggedSignal.H = H;
LoggedSignal.xi = xi;
LoggedSignal.m = m;
LoggedSignal.n = n;
LoggedSignal.cum_err = 0;
LoggedSignal.tot_T = tot_T;

end deep learning, save MATLAB Answers — New Questions

​

Tags: matlab

Share this!

Related posts

External Mode Connection Issue with C2000 LaunchPad and Speedgoat System
2025-05-17

External Mode Connection Issue with C2000 LaunchPad and Speedgoat System

how to validate mscohere?
2025-05-17

how to validate mscohere?

Transfer history to MATLAB 2025a
2025-05-17

Transfer history to MATLAB 2025a

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Search

Categories

  • Matlab
  • Microsoft
  • News
  • Other
Application Package Repository Telkom University

Tags

matlab microsoft opensources
Application Package Download License

Application Package Download License

Adobe
Google for Education
IBM
Matlab
Microsoft
Wordpress
Visual Paradigm
Opensource

Sign Up For Newsletters

Be the First to Know. Sign up for newsletter today

Application Package Repository Telkom University

Portal Application Package Repository Telkom University, for internal use only, empower civitas academica in study and research.

Information

  • Telkom University
  • About Us
  • Contact
  • Forum Discussion
  • FAQ
  • Helpdesk Ticket

Contact Us

  • Ask: Any question please read FAQ
  • Mail: helpdesk@telkomuniversity.ac.id
  • Call: +62 823-1994-9941
  • WA: +62 823-1994-9943
  • Site: Gedung Panambulai. Jl. Telekomunikasi

Copyright © Telkom University. All Rights Reserved. ch

  • FAQ
  • Privacy Policy
  • Term

This Application Package for internal Telkom University only (students and employee). Chiers... Dismiss