How to get the answer from the following code. How can i extract the values from the code?
%I have the following non-linear coupled ODE’S
%u"+(Nt*G1*u’)+(M1*G2*h’)+(R1*u)+(G3*GT*Theta)+(G4*GC*Phi)=0,
%(1+iHc)*G5*h"+u’+Nt*Pm*h’=0,
%T"+(Nt*Pr*G6)*T’-(S1*Pr*G7*T)=0;
%C"+(Nt*Sc*G8*C’)-(Hp*Sc*G8*C)=0;
% Boundary conditions: u=1, h=1,T’=G7*B1*(T-1),C’=G8*F1*(C-1) at y=0.
% u’,h’,T,C = 0 at y tends to infinity.
clc
B1 = 0.5;
F1 = 0.5;
k = 0.3;
RO = 0.5;
Hp = 0.2;
M1 = 16;
Nt = 0.15;
Pr = 6.2;
Pm = 0.7;
S1 = 1;
P1 = 0.02;
P2 = 0.0;
Sc = 0.78;
Hc = 0.5;
GT = 4;
GC = 5;
e1 = (1./(((1-P1).^2.5).*((1-P2).^2.5)));
Ros1 = 4420;
Ros2 = 5180;
Rof = 997.1;
Ro1 = (Ros1./Rof);
Ro2 = (Ros2./Rof);
e2 = ((1-P2).*((1-P1)+(P1.*Ro1)))+(P2.*Ro2);
Betas1 = 0.000058;
Betas2 = 0.000013;
Betaf = 0.00021;
Beta1 = ((Ros1.*Betas1)./(Rof.*Betaf));
Beta2 = ((Ros2.*Betas2)./(Rof.*Betaf));
e3 = ((1-P2).*((1-P1)+(P1.*Beta1)))+(P2.*Beta2);
BetaCs1 = 0.006;
BetaCs2 = 0.45;
BetaCf = 1;
BetaC1 = ((Ros1.*BetaCs1)./(Rof.*BetaCf));
BetaC2 = ((Ros2.*BetaCs2)./(Rof.*BetaCf));
e4 = ((1-P2).*((1-P1)+(P1.*BetaC1)))+(P2.*BetaC2);
sigmas1 = 580000;
sigmas2 = 25000;
sigmaf = 0.005;
sigma = (sigmas1./sigmaf);
d5 = (((1+2.*P1)+(2.*(1-P1).*(1./sigma)))./((1-P1)+((2+P1).*(1./sigma))));
e5 = d5.*(((sigmas2.*(1+2.*P2))+(2.*d5.*sigmaf.*(1-P2)))./((sigmas2.*(1-P2))+(d5.*sigmaf.*(2+P2))));
Cps1 = 0.56;
Cps2 = 670;
Cpf = 4179;
RoCp1 = ((Ros1.*Cps1)./(Rof.*Cpf));
RoCp2 = ((Ros2.*Cps2)./(Rof.*Cpf));
e6 = ((1-P2).*((1-P1)+(P1.*RoCp1)))+(P2.*RoCp2);
Ks1 = 7.2;
Ks2 = 9.7;
Kf = 0.613;
K = (Kf./Ks1);
d7 = (((1+2.*P1)+(2.*(1-P1).*K))./((1-P1)+((2+P1).*K)));
e7 = d7*((((Ks2+2.*d7.*Kf)+(2.*d7.*Kf))+(2.*P2.*(Ks2-d7.*Kf)))./((Ks2+2.*d7.*Kf)-(P2.*(Ks2-d7.*Kf))));
e8 = ((1-P1).*(1-P2));
G1 = (e2./e1);
G2 = (1./e1);
G3 = (e3./e1);
G4 = (e4./e1);
G5 = (1./e5);
G6 = (e6./e7);
G7 = (1./e7);
G8 = (1./e8);
dydx = @(x,y)[y(5);
y(6);
y(7);
y(8);
-(Nt.*Pr.*G6.*y(5))+(S1.*Pr.*G6.*y(1));
-(Nt.*Sc.*G8.*y(6))+(Hp.*Sc.*G8.*y(2));
-(Nt.*G1.*y(7))-(M1.*G2.*y(8))-(((2.*1i.*RO.*G1)-(1./k)).*y(3))-(GT.*G3.*y(1))-(GC.*G4.*y(2));
-((y(7)./((1+1i.*Hc).*G5)))-((Nt.*Pm.*y(8))./((1+1i.*Hc).*G5))];
BC1 = @(ya,yb)[(ya(5)-G7.*B1.*(ya(1)-1));yb(1);
(ya(6)-G8.*F1.*(ya(2)-1));yb(2);
ya(3)-1;yb(7);
ya(4)-1;yb(8)];
yinit = [0.1;0.1;0.1;0.1;0.1;0.1;0.1;0.1];
solinit = bvpinit(linspace(0,2,50),yinit);
options = bvpset(‘AbsTol’,1e-3,’RelTol’,1e-3,’stats’,’off’,’Nmax’,1000);
U1 = bvp4c(dydx,BC1,solinit,options);
I need to find the following
F = ((du/dy)-Nt*(d^2u/dy^2)) at y=0,J = -(i*(dh/dy)) at y=0,
N1 = -(dT/dy) at y=0, N2 = -(dC/dy) at y=0.%I have the following non-linear coupled ODE’S
%u"+(Nt*G1*u’)+(M1*G2*h’)+(R1*u)+(G3*GT*Theta)+(G4*GC*Phi)=0,
%(1+iHc)*G5*h"+u’+Nt*Pm*h’=0,
%T"+(Nt*Pr*G6)*T’-(S1*Pr*G7*T)=0;
%C"+(Nt*Sc*G8*C’)-(Hp*Sc*G8*C)=0;
% Boundary conditions: u=1, h=1,T’=G7*B1*(T-1),C’=G8*F1*(C-1) at y=0.
% u’,h’,T,C = 0 at y tends to infinity.
clc
B1 = 0.5;
F1 = 0.5;
k = 0.3;
RO = 0.5;
Hp = 0.2;
M1 = 16;
Nt = 0.15;
Pr = 6.2;
Pm = 0.7;
S1 = 1;
P1 = 0.02;
P2 = 0.0;
Sc = 0.78;
Hc = 0.5;
GT = 4;
GC = 5;
e1 = (1./(((1-P1).^2.5).*((1-P2).^2.5)));
Ros1 = 4420;
Ros2 = 5180;
Rof = 997.1;
Ro1 = (Ros1./Rof);
Ro2 = (Ros2./Rof);
e2 = ((1-P2).*((1-P1)+(P1.*Ro1)))+(P2.*Ro2);
Betas1 = 0.000058;
Betas2 = 0.000013;
Betaf = 0.00021;
Beta1 = ((Ros1.*Betas1)./(Rof.*Betaf));
Beta2 = ((Ros2.*Betas2)./(Rof.*Betaf));
e3 = ((1-P2).*((1-P1)+(P1.*Beta1)))+(P2.*Beta2);
BetaCs1 = 0.006;
BetaCs2 = 0.45;
BetaCf = 1;
BetaC1 = ((Ros1.*BetaCs1)./(Rof.*BetaCf));
BetaC2 = ((Ros2.*BetaCs2)./(Rof.*BetaCf));
e4 = ((1-P2).*((1-P1)+(P1.*BetaC1)))+(P2.*BetaC2);
sigmas1 = 580000;
sigmas2 = 25000;
sigmaf = 0.005;
sigma = (sigmas1./sigmaf);
d5 = (((1+2.*P1)+(2.*(1-P1).*(1./sigma)))./((1-P1)+((2+P1).*(1./sigma))));
e5 = d5.*(((sigmas2.*(1+2.*P2))+(2.*d5.*sigmaf.*(1-P2)))./((sigmas2.*(1-P2))+(d5.*sigmaf.*(2+P2))));
Cps1 = 0.56;
Cps2 = 670;
Cpf = 4179;
RoCp1 = ((Ros1.*Cps1)./(Rof.*Cpf));
RoCp2 = ((Ros2.*Cps2)./(Rof.*Cpf));
e6 = ((1-P2).*((1-P1)+(P1.*RoCp1)))+(P2.*RoCp2);
Ks1 = 7.2;
Ks2 = 9.7;
Kf = 0.613;
K = (Kf./Ks1);
d7 = (((1+2.*P1)+(2.*(1-P1).*K))./((1-P1)+((2+P1).*K)));
e7 = d7*((((Ks2+2.*d7.*Kf)+(2.*d7.*Kf))+(2.*P2.*(Ks2-d7.*Kf)))./((Ks2+2.*d7.*Kf)-(P2.*(Ks2-d7.*Kf))));
e8 = ((1-P1).*(1-P2));
G1 = (e2./e1);
G2 = (1./e1);
G3 = (e3./e1);
G4 = (e4./e1);
G5 = (1./e5);
G6 = (e6./e7);
G7 = (1./e7);
G8 = (1./e8);
dydx = @(x,y)[y(5);
y(6);
y(7);
y(8);
-(Nt.*Pr.*G6.*y(5))+(S1.*Pr.*G6.*y(1));
-(Nt.*Sc.*G8.*y(6))+(Hp.*Sc.*G8.*y(2));
-(Nt.*G1.*y(7))-(M1.*G2.*y(8))-(((2.*1i.*RO.*G1)-(1./k)).*y(3))-(GT.*G3.*y(1))-(GC.*G4.*y(2));
-((y(7)./((1+1i.*Hc).*G5)))-((Nt.*Pm.*y(8))./((1+1i.*Hc).*G5))];
BC1 = @(ya,yb)[(ya(5)-G7.*B1.*(ya(1)-1));yb(1);
(ya(6)-G8.*F1.*(ya(2)-1));yb(2);
ya(3)-1;yb(7);
ya(4)-1;yb(8)];
yinit = [0.1;0.1;0.1;0.1;0.1;0.1;0.1;0.1];
solinit = bvpinit(linspace(0,2,50),yinit);
options = bvpset(‘AbsTol’,1e-3,’RelTol’,1e-3,’stats’,’off’,’Nmax’,1000);
U1 = bvp4c(dydx,BC1,solinit,options);
I need to find the following
F = ((du/dy)-Nt*(d^2u/dy^2)) at y=0,J = -(i*(dh/dy)) at y=0,
N1 = -(dT/dy) at y=0, N2 = -(dC/dy) at y=0. %I have the following non-linear coupled ODE’S
%u"+(Nt*G1*u’)+(M1*G2*h’)+(R1*u)+(G3*GT*Theta)+(G4*GC*Phi)=0,
%(1+iHc)*G5*h"+u’+Nt*Pm*h’=0,
%T"+(Nt*Pr*G6)*T’-(S1*Pr*G7*T)=0;
%C"+(Nt*Sc*G8*C’)-(Hp*Sc*G8*C)=0;
% Boundary conditions: u=1, h=1,T’=G7*B1*(T-1),C’=G8*F1*(C-1) at y=0.
% u’,h’,T,C = 0 at y tends to infinity.
clc
B1 = 0.5;
F1 = 0.5;
k = 0.3;
RO = 0.5;
Hp = 0.2;
M1 = 16;
Nt = 0.15;
Pr = 6.2;
Pm = 0.7;
S1 = 1;
P1 = 0.02;
P2 = 0.0;
Sc = 0.78;
Hc = 0.5;
GT = 4;
GC = 5;
e1 = (1./(((1-P1).^2.5).*((1-P2).^2.5)));
Ros1 = 4420;
Ros2 = 5180;
Rof = 997.1;
Ro1 = (Ros1./Rof);
Ro2 = (Ros2./Rof);
e2 = ((1-P2).*((1-P1)+(P1.*Ro1)))+(P2.*Ro2);
Betas1 = 0.000058;
Betas2 = 0.000013;
Betaf = 0.00021;
Beta1 = ((Ros1.*Betas1)./(Rof.*Betaf));
Beta2 = ((Ros2.*Betas2)./(Rof.*Betaf));
e3 = ((1-P2).*((1-P1)+(P1.*Beta1)))+(P2.*Beta2);
BetaCs1 = 0.006;
BetaCs2 = 0.45;
BetaCf = 1;
BetaC1 = ((Ros1.*BetaCs1)./(Rof.*BetaCf));
BetaC2 = ((Ros2.*BetaCs2)./(Rof.*BetaCf));
e4 = ((1-P2).*((1-P1)+(P1.*BetaC1)))+(P2.*BetaC2);
sigmas1 = 580000;
sigmas2 = 25000;
sigmaf = 0.005;
sigma = (sigmas1./sigmaf);
d5 = (((1+2.*P1)+(2.*(1-P1).*(1./sigma)))./((1-P1)+((2+P1).*(1./sigma))));
e5 = d5.*(((sigmas2.*(1+2.*P2))+(2.*d5.*sigmaf.*(1-P2)))./((sigmas2.*(1-P2))+(d5.*sigmaf.*(2+P2))));
Cps1 = 0.56;
Cps2 = 670;
Cpf = 4179;
RoCp1 = ((Ros1.*Cps1)./(Rof.*Cpf));
RoCp2 = ((Ros2.*Cps2)./(Rof.*Cpf));
e6 = ((1-P2).*((1-P1)+(P1.*RoCp1)))+(P2.*RoCp2);
Ks1 = 7.2;
Ks2 = 9.7;
Kf = 0.613;
K = (Kf./Ks1);
d7 = (((1+2.*P1)+(2.*(1-P1).*K))./((1-P1)+((2+P1).*K)));
e7 = d7*((((Ks2+2.*d7.*Kf)+(2.*d7.*Kf))+(2.*P2.*(Ks2-d7.*Kf)))./((Ks2+2.*d7.*Kf)-(P2.*(Ks2-d7.*Kf))));
e8 = ((1-P1).*(1-P2));
G1 = (e2./e1);
G2 = (1./e1);
G3 = (e3./e1);
G4 = (e4./e1);
G5 = (1./e5);
G6 = (e6./e7);
G7 = (1./e7);
G8 = (1./e8);
dydx = @(x,y)[y(5);
y(6);
y(7);
y(8);
-(Nt.*Pr.*G6.*y(5))+(S1.*Pr.*G6.*y(1));
-(Nt.*Sc.*G8.*y(6))+(Hp.*Sc.*G8.*y(2));
-(Nt.*G1.*y(7))-(M1.*G2.*y(8))-(((2.*1i.*RO.*G1)-(1./k)).*y(3))-(GT.*G3.*y(1))-(GC.*G4.*y(2));
-((y(7)./((1+1i.*Hc).*G5)))-((Nt.*Pm.*y(8))./((1+1i.*Hc).*G5))];
BC1 = @(ya,yb)[(ya(5)-G7.*B1.*(ya(1)-1));yb(1);
(ya(6)-G8.*F1.*(ya(2)-1));yb(2);
ya(3)-1;yb(7);
ya(4)-1;yb(8)];
yinit = [0.1;0.1;0.1;0.1;0.1;0.1;0.1;0.1];
solinit = bvpinit(linspace(0,2,50),yinit);
options = bvpset(‘AbsTol’,1e-3,’RelTol’,1e-3,’stats’,’off’,’Nmax’,1000);
U1 = bvp4c(dydx,BC1,solinit,options);
I need to find the following
F = ((du/dy)-Nt*(d^2u/dy^2)) at y=0,J = -(i*(dh/dy)) at y=0,
N1 = -(dT/dy) at y=0, N2 = -(dC/dy) at y=0. how to get the answer from the following code. MATLAB Answers — New Questions