Email: helpdesk@telkomuniversity.ac.id

This Portal for internal use only!

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • IBM
  • Visual Paradigm
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Office
      • Windows
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Categories
  • Microsoft
    • Microsoft Apps
    • Office
    • Operating System
    • VLS
    • Developer Tools
    • Productivity Tools
    • Database
    • AI + Machine Learning
    • Middleware System
    • Learning Services
    • Analytics
    • Networking
    • Compute
    • Security
    • Internet Of Things
  • Adobe
  • Matlab
  • Google
  • Visual Paradigm
  • WordPress
    • Plugin WP
    • Themes WP
  • Opensource
  • Others
More Categories Less Categories
  • Get Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • My Account
    • Download
    • Cart
    • Checkout
    • Login
  • About Us
    • Contact
    • Forum
    • Frequently Questions
    • Privacy Policy
  • Forum
    • News
      • Category
      • News Tag

iconTicket Service Desk

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • IBM
  • Visual Paradigm
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Office
      • Windows
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Menu
  • Home
    • Download Application Package Repository Telkom University
    • Application Package Repository Telkom University
    • Download Official License Telkom University
    • Download Installer Application Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • All Pack
    • Microsoft
      • Operating System
      • Productivity Tools
      • Developer Tools
      • Database
      • AI + Machine Learning
      • Middleware System
      • Networking
      • Compute
      • Security
      • Analytics
      • Internet Of Things
      • Learning Services
    • Microsoft Apps
      • VLS
    • Adobe
    • Matlab
    • WordPress
      • Themes WP
      • Plugin WP
    • Google
    • Opensource
    • Others
  • My account
    • Download
    • Get Pack
    • Cart
    • Checkout
  • News
    • Category
    • News Tag
  • Forum
  • About Us
    • Privacy Policy
    • Frequently Questions
    • Contact
Home/Matlab/How to make an FRF with my accelerometer Data and FFT?

How to make an FRF with my accelerometer Data and FFT?

PuTI / 2025-01-13
How to make an FRF with my accelerometer Data and FFT?
Matlab News

Dear, Matlab Users.
I have some inquiries about my accelerometer Data, that was processed by a Dewesoft Software.
So, I am gonna share my code and data, and I would like to know if there any suggestion to this resolution.
Sensitivy: 102 mV/g, or 10.40 mV/m/s^2
%Load data
clear all
load("C:UsersjoantDesktopField_ResearchMatlab_Codedata_test.mat")
whos
close all

%Plot the array according to the data
%Data of Channel 1
g1= transpose(Data1_352C33OLD)
t1= transpose(Data1_time_352C33OLD); % time
dt=1/(Sample_rate) % period
L=length(g1)
%Iterate
% Figure of Channel 1
figure(1)
plot(t1,g1,’b.-‘)
set(gca,’Fontsize’,14)
xlabel(‘time(s)’)
ylabel(‘g’)
xlim([min(t1) max(t1)])
%ylim([-6 6])
grid on

% Calculate Fourier transform of force
points=round((t1(L))/dt) %Calculate the points
A_F= g1; % This is the Force for setting in the fft.
freq= (0:1/(dt*points):(1-1/(2*points))/dt)’; %Hz
freq=freq(1:round(points/2+1),:); %Hz
length(freq)
length(fft(A_F))

%In this part I need help
A_fft=fft(g1); %without the conversion by 9.8 m/s^2
abs_A=abs(A_fft)
figure(4)
plot(freq,abs_A(1:length(freq)))
xlim([0 6]) % Because 5 Hz is 300 RPM
%ylim([-400 400])
xlabel(‘Frequency (Hz)’)
ylabel(‘g’)

%According to the practice in the laboratory the result is the following
%image.
This was my process to obtain the FFT, I would like to know if this process is correct?. Because when I plot this data is not the same values in y-axis that I had in the Dewesoft software.
Dewesoft fft(g) (attached) vs matlab fft(g) (attached)

Question #2
According to a Mechanical vibration book, I have the next equation to find the FRF. I applied this but my FRF y axis value is too high so, I don’t know If I didn’t applied correctly. That information is in my code and I use the following equation.

w= natural frequency = 31.42 rad/s^2.
I assumpted that A/F is g because according to the book, it says the next information: "Because the acceloremeter produces a voltage that is proportional to acceleration, we obtain the accelerance, A/F(w), from the dynamic signal analyzer".
My graph result:

This graph it doesn’t have sense, because I need values aroun of 0.15-0.17 in the first vibration mode. So, I would like to know if there any suggestion how to resolve this.
Best Regards,
Jo98.Dear, Matlab Users.
I have some inquiries about my accelerometer Data, that was processed by a Dewesoft Software.
So, I am gonna share my code and data, and I would like to know if there any suggestion to this resolution.
Sensitivy: 102 mV/g, or 10.40 mV/m/s^2
%Load data
clear all
load("C:UsersjoantDesktopField_ResearchMatlab_Codedata_test.mat")
whos
close all

%Plot the array according to the data
%Data of Channel 1
g1= transpose(Data1_352C33OLD)
t1= transpose(Data1_time_352C33OLD); % time
dt=1/(Sample_rate) % period
L=length(g1)
%Iterate
% Figure of Channel 1
figure(1)
plot(t1,g1,’b.-‘)
set(gca,’Fontsize’,14)
xlabel(‘time(s)’)
ylabel(‘g’)
xlim([min(t1) max(t1)])
%ylim([-6 6])
grid on

% Calculate Fourier transform of force
points=round((t1(L))/dt) %Calculate the points
A_F= g1; % This is the Force for setting in the fft.
freq= (0:1/(dt*points):(1-1/(2*points))/dt)’; %Hz
freq=freq(1:round(points/2+1),:); %Hz
length(freq)
length(fft(A_F))

%In this part I need help
A_fft=fft(g1); %without the conversion by 9.8 m/s^2
abs_A=abs(A_fft)
figure(4)
plot(freq,abs_A(1:length(freq)))
xlim([0 6]) % Because 5 Hz is 300 RPM
%ylim([-400 400])
xlabel(‘Frequency (Hz)’)
ylabel(‘g’)

%According to the practice in the laboratory the result is the following
%image.
This was my process to obtain the FFT, I would like to know if this process is correct?. Because when I plot this data is not the same values in y-axis that I had in the Dewesoft software.
Dewesoft fft(g) (attached) vs matlab fft(g) (attached)

Question #2
According to a Mechanical vibration book, I have the next equation to find the FRF. I applied this but my FRF y axis value is too high so, I don’t know If I didn’t applied correctly. That information is in my code and I use the following equation.

w= natural frequency = 31.42 rad/s^2.
I assumpted that A/F is g because according to the book, it says the next information: "Because the acceloremeter produces a voltage that is proportional to acceleration, we obtain the accelerance, A/F(w), from the dynamic signal analyzer".
My graph result:

This graph it doesn’t have sense, because I need values aroun of 0.15-0.17 in the first vibration mode. So, I would like to know if there any suggestion how to resolve this.
Best Regards,
Jo98. Dear, Matlab Users.
I have some inquiries about my accelerometer Data, that was processed by a Dewesoft Software.
So, I am gonna share my code and data, and I would like to know if there any suggestion to this resolution.
Sensitivy: 102 mV/g, or 10.40 mV/m/s^2
%Load data
clear all
load("C:UsersjoantDesktopField_ResearchMatlab_Codedata_test.mat")
whos
close all

%Plot the array according to the data
%Data of Channel 1
g1= transpose(Data1_352C33OLD)
t1= transpose(Data1_time_352C33OLD); % time
dt=1/(Sample_rate) % period
L=length(g1)
%Iterate
% Figure of Channel 1
figure(1)
plot(t1,g1,’b.-‘)
set(gca,’Fontsize’,14)
xlabel(‘time(s)’)
ylabel(‘g’)
xlim([min(t1) max(t1)])
%ylim([-6 6])
grid on

% Calculate Fourier transform of force
points=round((t1(L))/dt) %Calculate the points
A_F= g1; % This is the Force for setting in the fft.
freq= (0:1/(dt*points):(1-1/(2*points))/dt)’; %Hz
freq=freq(1:round(points/2+1),:); %Hz
length(freq)
length(fft(A_F))

%In this part I need help
A_fft=fft(g1); %without the conversion by 9.8 m/s^2
abs_A=abs(A_fft)
figure(4)
plot(freq,abs_A(1:length(freq)))
xlim([0 6]) % Because 5 Hz is 300 RPM
%ylim([-400 400])
xlabel(‘Frequency (Hz)’)
ylabel(‘g’)

%According to the practice in the laboratory the result is the following
%image.
This was my process to obtain the FFT, I would like to know if this process is correct?. Because when I plot this data is not the same values in y-axis that I had in the Dewesoft software.
Dewesoft fft(g) (attached) vs matlab fft(g) (attached)

Question #2
According to a Mechanical vibration book, I have the next equation to find the FRF. I applied this but my FRF y axis value is too high so, I don’t know If I didn’t applied correctly. That information is in my code and I use the following equation.

w= natural frequency = 31.42 rad/s^2.
I assumpted that A/F is g because according to the book, it says the next information: "Because the acceloremeter produces a voltage that is proportional to acceleration, we obtain the accelerance, A/F(w), from the dynamic signal analyzer".
My graph result:

This graph it doesn’t have sense, because I need values aroun of 0.15-0.17 in the first vibration mode. So, I would like to know if there any suggestion how to resolve this.
Best Regards,
Jo98. fft, frf, plot MATLAB Answers — New Questions

​

Tags: matlab

Share this!

Related posts

Optimal decimation to Log Simulation Data
2025-05-18

Optimal decimation to Log Simulation Data

I need to use a scope to display the current i and the power P as functions of the voltage V, with the curves obtained for various irradiance levels and temperatures
2025-05-18

I need to use a scope to display the current i and the power P as functions of the voltage V, with the curves obtained for various irradiance levels and temperatures

Break in and break away points on Root Locus
2025-05-18

Break in and break away points on Root Locus

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Search

Categories

  • Matlab
  • Microsoft
  • News
  • Other
Application Package Repository Telkom University

Tags

matlab microsoft opensources
Application Package Download License

Application Package Download License

Adobe
Google for Education
IBM
Matlab
Microsoft
Wordpress
Visual Paradigm
Opensource

Sign Up For Newsletters

Be the First to Know. Sign up for newsletter today

Application Package Repository Telkom University

Portal Application Package Repository Telkom University, for internal use only, empower civitas academica in study and research.

Information

  • Telkom University
  • About Us
  • Contact
  • Forum Discussion
  • FAQ
  • Helpdesk Ticket

Contact Us

  • Ask: Any question please read FAQ
  • Mail: helpdesk@telkomuniversity.ac.id
  • Call: +62 823-1994-9941
  • WA: +62 823-1994-9943
  • Site: Gedung Panambulai. Jl. Telekomunikasi

Copyright © Telkom University. All Rights Reserved. ch

  • FAQ
  • Privacy Policy
  • Term

This Application Package for internal Telkom University only (students and employee). Chiers... Dismiss