Email: helpdesk@telkomuniversity.ac.id

This Portal for internal use only!

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • Visual Paradigm
  • IBM
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Office
      • Windows
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Categories
  • Microsoft
    • Microsoft Apps
    • Office
    • Operating System
    • VLS
    • Developer Tools
    • Productivity Tools
    • Database
    • AI + Machine Learning
    • Middleware System
    • Learning Services
    • Analytics
    • Networking
    • Compute
    • Security
    • Internet Of Things
  • Adobe
  • Matlab
  • Google
  • Visual Paradigm
  • WordPress
    • Plugin WP
    • Themes WP
  • Opensource
  • Others
More Categories Less Categories
  • Get Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • My Account
    • Download
    • Cart
    • Checkout
    • Login
  • About Us
    • Contact
    • Forum
    • Frequently Questions
    • Privacy Policy
  • Forum
    • News
      • Category
      • News Tag

iconTicket Service Desk

  • My Download
  • Checkout
Application Package Repository Telkom University
All Categories

All Categories

  • Visual Paradigm
  • IBM
  • Adobe
  • Google
  • Matlab
  • Microsoft
    • Microsoft Apps
    • Analytics
    • AI + Machine Learning
    • Compute
    • Database
    • Developer Tools
    • Internet Of Things
    • Learning Services
    • Middleware System
    • Networking
    • Operating System
    • Productivity Tools
    • Security
    • VLS
      • Office
      • Windows
  • Opensource
  • Wordpress
    • Plugin WP
    • Themes WP
  • Others

Search

0 Wishlist

Cart

Menu
  • Home
    • Download Application Package Repository Telkom University
    • Application Package Repository Telkom University
    • Download Official License Telkom University
    • Download Installer Application Pack
    • Product Category
    • Simple Product
    • Grouped Product
    • Variable Product
    • External Product
  • All Pack
    • Microsoft
      • Operating System
      • Productivity Tools
      • Developer Tools
      • Database
      • AI + Machine Learning
      • Middleware System
      • Networking
      • Compute
      • Security
      • Analytics
      • Internet Of Things
      • Learning Services
    • Microsoft Apps
      • VLS
    • Adobe
    • Matlab
    • WordPress
      • Themes WP
      • Plugin WP
    • Google
    • Opensource
    • Others
  • My account
    • Download
    • Get Pack
    • Cart
    • Checkout
  • News
    • Category
    • News Tag
  • Forum
  • About Us
    • Privacy Policy
    • Frequently Questions
    • Contact
Home/Matlab/How to solve system of PDE’s using crank nicolson method to get graphical interpretations of equations? How to get skin friction and nusselt number using this code?

How to solve system of PDE’s using crank nicolson method to get graphical interpretations of equations? How to get skin friction and nusselt number using this code?

PuTI / 2025-01-30
How to solve system of PDE’s using crank nicolson method to get graphical interpretations of equations? How to get skin friction and nusselt number using this code?
Matlab News

i have attached my matlb code for solving system of PDE ∂u/∂t=(∂^2 u)/〖∂η〗^2 +α (∂^3 u)/〖∂η〗^3 +δcφ+Grθ-Mu
∂θ/∂t=1/Pr (∂^2 θ)/〖∂η〗^2 +D_f (∂^2 φ)/〖∂η〗^2
∂φ/∂t=1/S_c (∂^2 φ)/〖∂η〗^2 +S_r (∂^2 θ)/〖∂η〗^2
when η→0
when η→0:u=sin⁡(wt),θ=1 ,φ=1
when η→∞:u→0,θ→0,φ→0
But,i’m confused how to set boundary conditions in this code. Also i want to set these skin friction and nusselt number expressions: C_f=-(∂u/∂η) at η=0
Nu〖Re〗_x^(-1)=-(∂θ/∂η) at η=0
in this code;
function yy= crank
n=105;
h=0.01;
m=0.1;
B=0; %B=0.0001;
Gr=2; %Gr=0.1=Delt. Gs=Dels
A=2; %A=alpha
Pr=5;

Gs=1; %3.5

Sc=1.5;
M=9; %M=30,12
Df=5;
Sr=10;
Ec=0.1; % 0.01-0.1(0-1)
t(1)=0;
s(1)=0;
for j=2:n
t(j)=t(j-1)+h;
end
for j=2:n
s(j)=s(j-1)+m;
end
k=1;
for j=1:n

aa(j,k)=exp(-0.15*Pr^2*t(j)*Ec^-0.1/Gr^0.1); % Guess M*Gr*Gs*S
bb(j,k)=exp(-t(j)*Sc/(Ec)^0.01*M); %bb(j,k)=exp(-Pr^2*t(j)/Ec);
cc(j,k)=exp(-Sc*2*t(j)/Ec^0.3);
end
a{1,k}=[1 0 0;0 1 0;0 0 1];
for j=2:n-1
a{j,k}=[-(1/h)-(1/h^2)-2*A-M Gr Gs;0 -(1/h)-(1/Pr*(h^2)) -Df/h^2;0 -Sr/h^2 -(1/h)-(1/Sc*h^2)];
end
a{n,k}=[1 0 0;0 1 0;0 0 1];
for j=2:n-1
b{j,k}=[(1/2*h^2)+(A/h^3) 0 0;0 1/2*Pr*h^2 Df/2*h^2;0 Sr/2*h^2 1/2*Sc*h^2]; % Lower diagonal entries
end
b{n,k}=[0 0 0;0 0 0;0 0 0];
c{1,k}=[0 0 0;0 0 0;0 0 0];
for j=2:n-1
c{j,k}=[(1/2*h^2)+(A/h^3) 0 0;0 1/2*Pr*h^2 Df/2*h^2;0 Sr/2*h^2 1/2*Sc*h^2];
end
r1(1,k)=0;
r2(1,k)=0;
r3(1,k)=0;
for j=2:n-1
r1(j,k)=-(exp(t(j))/h)-(1/2*h^2)*(1)*(exp(-t(j+1))-2*exp(-t(j))+exp(-t(j-1)))-Gr*exp(-t(j))-Gs*exp(t(j))+M*exp(-t(j))-(A/2*h^3)*(-exp(-t(j+1))+2*exp(-t(j))-exp(-t(j-1)))…
+(aa(j,k)/h)-(1/2*h^2)*(1)*(aa(j+1,k)-2*aa(j,k)+aa(j-1,k))-(A/2*h^3)*( aa(j+1,k)^2-2*aa(j+1,k)*aa(j,k))-Gr*bb(j,k)-Gs*cc(j,k)+M*aa(j,k);

r2(j,k)=(exp((-t(j)))/h)-(1/2*Pr*h^2)*(exp(-t(j+1))-2* exp(-t(j))+exp(-t(j-1)))-Df*(1/2*h^2)*(exp(-t(j+1))-2* exp(-t(j))…
+exp(-t(j-1)))+(bb(j,k)/h)-(1/2*Pr*h^2)*(bb(j+1,k)-2*bb(j,k)+bb(j-1,k))-(Df/2*h^2)*(cc(j+1,k)-2*cc(j,k)+cc(j-1,k));

r3(j,k)=-(exp((-t(j)))/h)-(1/2*Sc*h^2)*(exp(-t(j+1))-2*exp(-t(j))+exp(-t(j-1)))-(Sr/2*h^2)*(exp(-t(j+1))-2*exp(-t(j))+exp(-t(j-1)))+ (cc(j,k)/h)…
-(1/2*Sc*h^2)*(cc(j+1,k)-2*cc(j,k)+cc(j-1,k))-(Sr/2*h^2)*(bb(j+1,k)-2*bb(j,k)+bb(j-1,k));

end
r1(n,k)= 0;
r2(n,k)=0;
r3(n,k)=0;
for j=1:n
rr{j,k}=[r1(j,k);r2(j,k);r3(j,k)];
end
gamma{1,k}=inv(a{1,k})*c{1,k};
for j=2:n-1
a{j,k}=a{j,k}-(b{j,k}*gamma{j-1,k});
gamma{j,k}=inv(a{j,k})*c{j,k};
end

y{1}=inv(a{1})*rr{1};
for j=2:n
y{j}=inv(a{j})*(rr{j}-b{j}*y{j-1});
end
x{n}=y{n};
for j=n-1:-1:1
x{j}=y{j}-(gamma{j})*x{j+1};
end
for j=n:-1:1
u(j,k)=x{j}(1,1);
z(j,k)=x{j}(2,1);
q(j,k)=x{j}(3,1);
end
for j=1:n
xx(j,k)= aa(j,k)+u(j,k);
yy(j,k)= bb(j,k)+z(j,k);
zz(j,k)= cc(j,k)+q(j,k);
end
for j=1:n-1
%U(j)=-((1+(1/B))*((xx(j+1)-xx(j))/h))
%U(j)=-((yy(j+1)-yy(j))/2*h)
end
%ee=meshgrid(xx);
%V=trapz(ee);
%eee=meshgrid(V);
%[XX,YY]=meshgrid(t,s);
%XXX=meshgrid(xx);
%surf(XX,YY,XXX)
%contour(eee)
figure(1)
plot(t,xx,’LineWidth’,2,’MarkerSize’,16,’linestyle’,’-‘,’color’,’k’)
xlabel(‘eta’,’Interpreter’,’tex’,’FontSize’,16,’FontWeight’,’bold’);
ylabel(‘u’,’Interpreter’,’tex’,’FontSize’,16,’FontWeight’,’bold’);
grid on
hold on
figure(2)
plot(t,yy,’LineWidth’,2,’MarkerSize’,16,’linestyle’,’-‘,’color’,’k’)
xlabel(‘eta’,’Interpreter’,’tex’,’FontSize’,16,’FontWeight’,’bold’);
ylabel(‘Theta(eta)’,’Interpreter’,’tex’,’FontSize’,16,’FontWeight’,’bold’);
grid on
hold on
figure(3)
plot(t,zz,’LineWidth’,2,’MarkerSize’,16,’linestyle’,’–‘,’color’,’r’)
xlabel(‘eta’,’Interpreter’,’tex’,’FontSize’,16,’FontWeight’,’bold’);
ylabel(‘Phi(eta)’,’Interpreter’,’tex’,’FontSize’,16,’FontWeight’,’bold’);
grid on
hold oni have attached my matlb code for solving system of PDE ∂u/∂t=(∂^2 u)/〖∂η〗^2 +α (∂^3 u)/〖∂η〗^3 +δcφ+Grθ-Mu
∂θ/∂t=1/Pr (∂^2 θ)/〖∂η〗^2 +D_f (∂^2 φ)/〖∂η〗^2
∂φ/∂t=1/S_c (∂^2 φ)/〖∂η〗^2 +S_r (∂^2 θ)/〖∂η〗^2
when η→0
when η→0:u=sin⁡(wt),θ=1 ,φ=1
when η→∞:u→0,θ→0,φ→0
But,i’m confused how to set boundary conditions in this code. Also i want to set these skin friction and nusselt number expressions: C_f=-(∂u/∂η) at η=0
Nu〖Re〗_x^(-1)=-(∂θ/∂η) at η=0
in this code;
function yy= crank
n=105;
h=0.01;
m=0.1;
B=0; %B=0.0001;
Gr=2; %Gr=0.1=Delt. Gs=Dels
A=2; %A=alpha
Pr=5;

Gs=1; %3.5

Sc=1.5;
M=9; %M=30,12
Df=5;
Sr=10;
Ec=0.1; % 0.01-0.1(0-1)
t(1)=0;
s(1)=0;
for j=2:n
t(j)=t(j-1)+h;
end
for j=2:n
s(j)=s(j-1)+m;
end
k=1;
for j=1:n

aa(j,k)=exp(-0.15*Pr^2*t(j)*Ec^-0.1/Gr^0.1); % Guess M*Gr*Gs*S
bb(j,k)=exp(-t(j)*Sc/(Ec)^0.01*M); %bb(j,k)=exp(-Pr^2*t(j)/Ec);
cc(j,k)=exp(-Sc*2*t(j)/Ec^0.3);
end
a{1,k}=[1 0 0;0 1 0;0 0 1];
for j=2:n-1
a{j,k}=[-(1/h)-(1/h^2)-2*A-M Gr Gs;0 -(1/h)-(1/Pr*(h^2)) -Df/h^2;0 -Sr/h^2 -(1/h)-(1/Sc*h^2)];
end
a{n,k}=[1 0 0;0 1 0;0 0 1];
for j=2:n-1
b{j,k}=[(1/2*h^2)+(A/h^3) 0 0;0 1/2*Pr*h^2 Df/2*h^2;0 Sr/2*h^2 1/2*Sc*h^2]; % Lower diagonal entries
end
b{n,k}=[0 0 0;0 0 0;0 0 0];
c{1,k}=[0 0 0;0 0 0;0 0 0];
for j=2:n-1
c{j,k}=[(1/2*h^2)+(A/h^3) 0 0;0 1/2*Pr*h^2 Df/2*h^2;0 Sr/2*h^2 1/2*Sc*h^2];
end
r1(1,k)=0;
r2(1,k)=0;
r3(1,k)=0;
for j=2:n-1
r1(j,k)=-(exp(t(j))/h)-(1/2*h^2)*(1)*(exp(-t(j+1))-2*exp(-t(j))+exp(-t(j-1)))-Gr*exp(-t(j))-Gs*exp(t(j))+M*exp(-t(j))-(A/2*h^3)*(-exp(-t(j+1))+2*exp(-t(j))-exp(-t(j-1)))…
+(aa(j,k)/h)-(1/2*h^2)*(1)*(aa(j+1,k)-2*aa(j,k)+aa(j-1,k))-(A/2*h^3)*( aa(j+1,k)^2-2*aa(j+1,k)*aa(j,k))-Gr*bb(j,k)-Gs*cc(j,k)+M*aa(j,k);

r2(j,k)=(exp((-t(j)))/h)-(1/2*Pr*h^2)*(exp(-t(j+1))-2* exp(-t(j))+exp(-t(j-1)))-Df*(1/2*h^2)*(exp(-t(j+1))-2* exp(-t(j))…
+exp(-t(j-1)))+(bb(j,k)/h)-(1/2*Pr*h^2)*(bb(j+1,k)-2*bb(j,k)+bb(j-1,k))-(Df/2*h^2)*(cc(j+1,k)-2*cc(j,k)+cc(j-1,k));

r3(j,k)=-(exp((-t(j)))/h)-(1/2*Sc*h^2)*(exp(-t(j+1))-2*exp(-t(j))+exp(-t(j-1)))-(Sr/2*h^2)*(exp(-t(j+1))-2*exp(-t(j))+exp(-t(j-1)))+ (cc(j,k)/h)…
-(1/2*Sc*h^2)*(cc(j+1,k)-2*cc(j,k)+cc(j-1,k))-(Sr/2*h^2)*(bb(j+1,k)-2*bb(j,k)+bb(j-1,k));

end
r1(n,k)= 0;
r2(n,k)=0;
r3(n,k)=0;
for j=1:n
rr{j,k}=[r1(j,k);r2(j,k);r3(j,k)];
end
gamma{1,k}=inv(a{1,k})*c{1,k};
for j=2:n-1
a{j,k}=a{j,k}-(b{j,k}*gamma{j-1,k});
gamma{j,k}=inv(a{j,k})*c{j,k};
end

y{1}=inv(a{1})*rr{1};
for j=2:n
y{j}=inv(a{j})*(rr{j}-b{j}*y{j-1});
end
x{n}=y{n};
for j=n-1:-1:1
x{j}=y{j}-(gamma{j})*x{j+1};
end
for j=n:-1:1
u(j,k)=x{j}(1,1);
z(j,k)=x{j}(2,1);
q(j,k)=x{j}(3,1);
end
for j=1:n
xx(j,k)= aa(j,k)+u(j,k);
yy(j,k)= bb(j,k)+z(j,k);
zz(j,k)= cc(j,k)+q(j,k);
end
for j=1:n-1
%U(j)=-((1+(1/B))*((xx(j+1)-xx(j))/h))
%U(j)=-((yy(j+1)-yy(j))/2*h)
end
%ee=meshgrid(xx);
%V=trapz(ee);
%eee=meshgrid(V);
%[XX,YY]=meshgrid(t,s);
%XXX=meshgrid(xx);
%surf(XX,YY,XXX)
%contour(eee)
figure(1)
plot(t,xx,’LineWidth’,2,’MarkerSize’,16,’linestyle’,’-‘,’color’,’k’)
xlabel(‘eta’,’Interpreter’,’tex’,’FontSize’,16,’FontWeight’,’bold’);
ylabel(‘u’,’Interpreter’,’tex’,’FontSize’,16,’FontWeight’,’bold’);
grid on
hold on
figure(2)
plot(t,yy,’LineWidth’,2,’MarkerSize’,16,’linestyle’,’-‘,’color’,’k’)
xlabel(‘eta’,’Interpreter’,’tex’,’FontSize’,16,’FontWeight’,’bold’);
ylabel(‘Theta(eta)’,’Interpreter’,’tex’,’FontSize’,16,’FontWeight’,’bold’);
grid on
hold on
figure(3)
plot(t,zz,’LineWidth’,2,’MarkerSize’,16,’linestyle’,’–‘,’color’,’r’)
xlabel(‘eta’,’Interpreter’,’tex’,’FontSize’,16,’FontWeight’,’bold’);
ylabel(‘Phi(eta)’,’Interpreter’,’tex’,’FontSize’,16,’FontWeight’,’bold’);
grid on
hold on i have attached my matlb code for solving system of PDE ∂u/∂t=(∂^2 u)/〖∂η〗^2 +α (∂^3 u)/〖∂η〗^3 +δcφ+Grθ-Mu
∂θ/∂t=1/Pr (∂^2 θ)/〖∂η〗^2 +D_f (∂^2 φ)/〖∂η〗^2
∂φ/∂t=1/S_c (∂^2 φ)/〖∂η〗^2 +S_r (∂^2 θ)/〖∂η〗^2
when η→0
when η→0:u=sin⁡(wt),θ=1 ,φ=1
when η→∞:u→0,θ→0,φ→0
But,i’m confused how to set boundary conditions in this code. Also i want to set these skin friction and nusselt number expressions: C_f=-(∂u/∂η) at η=0
Nu〖Re〗_x^(-1)=-(∂θ/∂η) at η=0
in this code;
function yy= crank
n=105;
h=0.01;
m=0.1;
B=0; %B=0.0001;
Gr=2; %Gr=0.1=Delt. Gs=Dels
A=2; %A=alpha
Pr=5;

Gs=1; %3.5

Sc=1.5;
M=9; %M=30,12
Df=5;
Sr=10;
Ec=0.1; % 0.01-0.1(0-1)
t(1)=0;
s(1)=0;
for j=2:n
t(j)=t(j-1)+h;
end
for j=2:n
s(j)=s(j-1)+m;
end
k=1;
for j=1:n

aa(j,k)=exp(-0.15*Pr^2*t(j)*Ec^-0.1/Gr^0.1); % Guess M*Gr*Gs*S
bb(j,k)=exp(-t(j)*Sc/(Ec)^0.01*M); %bb(j,k)=exp(-Pr^2*t(j)/Ec);
cc(j,k)=exp(-Sc*2*t(j)/Ec^0.3);
end
a{1,k}=[1 0 0;0 1 0;0 0 1];
for j=2:n-1
a{j,k}=[-(1/h)-(1/h^2)-2*A-M Gr Gs;0 -(1/h)-(1/Pr*(h^2)) -Df/h^2;0 -Sr/h^2 -(1/h)-(1/Sc*h^2)];
end
a{n,k}=[1 0 0;0 1 0;0 0 1];
for j=2:n-1
b{j,k}=[(1/2*h^2)+(A/h^3) 0 0;0 1/2*Pr*h^2 Df/2*h^2;0 Sr/2*h^2 1/2*Sc*h^2]; % Lower diagonal entries
end
b{n,k}=[0 0 0;0 0 0;0 0 0];
c{1,k}=[0 0 0;0 0 0;0 0 0];
for j=2:n-1
c{j,k}=[(1/2*h^2)+(A/h^3) 0 0;0 1/2*Pr*h^2 Df/2*h^2;0 Sr/2*h^2 1/2*Sc*h^2];
end
r1(1,k)=0;
r2(1,k)=0;
r3(1,k)=0;
for j=2:n-1
r1(j,k)=-(exp(t(j))/h)-(1/2*h^2)*(1)*(exp(-t(j+1))-2*exp(-t(j))+exp(-t(j-1)))-Gr*exp(-t(j))-Gs*exp(t(j))+M*exp(-t(j))-(A/2*h^3)*(-exp(-t(j+1))+2*exp(-t(j))-exp(-t(j-1)))…
+(aa(j,k)/h)-(1/2*h^2)*(1)*(aa(j+1,k)-2*aa(j,k)+aa(j-1,k))-(A/2*h^3)*( aa(j+1,k)^2-2*aa(j+1,k)*aa(j,k))-Gr*bb(j,k)-Gs*cc(j,k)+M*aa(j,k);

r2(j,k)=(exp((-t(j)))/h)-(1/2*Pr*h^2)*(exp(-t(j+1))-2* exp(-t(j))+exp(-t(j-1)))-Df*(1/2*h^2)*(exp(-t(j+1))-2* exp(-t(j))…
+exp(-t(j-1)))+(bb(j,k)/h)-(1/2*Pr*h^2)*(bb(j+1,k)-2*bb(j,k)+bb(j-1,k))-(Df/2*h^2)*(cc(j+1,k)-2*cc(j,k)+cc(j-1,k));

r3(j,k)=-(exp((-t(j)))/h)-(1/2*Sc*h^2)*(exp(-t(j+1))-2*exp(-t(j))+exp(-t(j-1)))-(Sr/2*h^2)*(exp(-t(j+1))-2*exp(-t(j))+exp(-t(j-1)))+ (cc(j,k)/h)…
-(1/2*Sc*h^2)*(cc(j+1,k)-2*cc(j,k)+cc(j-1,k))-(Sr/2*h^2)*(bb(j+1,k)-2*bb(j,k)+bb(j-1,k));

end
r1(n,k)= 0;
r2(n,k)=0;
r3(n,k)=0;
for j=1:n
rr{j,k}=[r1(j,k);r2(j,k);r3(j,k)];
end
gamma{1,k}=inv(a{1,k})*c{1,k};
for j=2:n-1
a{j,k}=a{j,k}-(b{j,k}*gamma{j-1,k});
gamma{j,k}=inv(a{j,k})*c{j,k};
end

y{1}=inv(a{1})*rr{1};
for j=2:n
y{j}=inv(a{j})*(rr{j}-b{j}*y{j-1});
end
x{n}=y{n};
for j=n-1:-1:1
x{j}=y{j}-(gamma{j})*x{j+1};
end
for j=n:-1:1
u(j,k)=x{j}(1,1);
z(j,k)=x{j}(2,1);
q(j,k)=x{j}(3,1);
end
for j=1:n
xx(j,k)= aa(j,k)+u(j,k);
yy(j,k)= bb(j,k)+z(j,k);
zz(j,k)= cc(j,k)+q(j,k);
end
for j=1:n-1
%U(j)=-((1+(1/B))*((xx(j+1)-xx(j))/h))
%U(j)=-((yy(j+1)-yy(j))/2*h)
end
%ee=meshgrid(xx);
%V=trapz(ee);
%eee=meshgrid(V);
%[XX,YY]=meshgrid(t,s);
%XXX=meshgrid(xx);
%surf(XX,YY,XXX)
%contour(eee)
figure(1)
plot(t,xx,’LineWidth’,2,’MarkerSize’,16,’linestyle’,’-‘,’color’,’k’)
xlabel(‘eta’,’Interpreter’,’tex’,’FontSize’,16,’FontWeight’,’bold’);
ylabel(‘u’,’Interpreter’,’tex’,’FontSize’,16,’FontWeight’,’bold’);
grid on
hold on
figure(2)
plot(t,yy,’LineWidth’,2,’MarkerSize’,16,’linestyle’,’-‘,’color’,’k’)
xlabel(‘eta’,’Interpreter’,’tex’,’FontSize’,16,’FontWeight’,’bold’);
ylabel(‘Theta(eta)’,’Interpreter’,’tex’,’FontSize’,16,’FontWeight’,’bold’);
grid on
hold on
figure(3)
plot(t,zz,’LineWidth’,2,’MarkerSize’,16,’linestyle’,’–‘,’color’,’r’)
xlabel(‘eta’,’Interpreter’,’tex’,’FontSize’,16,’FontWeight’,’bold’);
ylabel(‘Phi(eta)’,’Interpreter’,’tex’,’FontSize’,16,’FontWeight’,’bold’);
grid on
hold on system of pde’s, crank nicloson method in matlab, skin friction and nusselt number MATLAB Answers — New Questions

​

Tags: matlab

Share this!

Related posts

I have got  the the liquid film surface  of x,y,z  coordinates and wall temperature data outside a 3D horizontal circular pipe from Fluent, how to calculate and output the 3D
2025-05-13

I have got the the liquid film surface of x,y,z coordinates and wall temperature data outside a 3D horizontal circular pipe from Fluent, how to calculate and output the 3D

Why are there duplicate posts in MATLAB Answers?
2025-05-13

Why are there duplicate posts in MATLAB Answers?

Why do I receive MathWorks Licensing Error 89?
2025-05-13

Why do I receive MathWorks Licensing Error 89?

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Search

Categories

  • Matlab
  • Microsoft
  • News
  • Other
Application Package Repository Telkom University

Tags

matlab microsoft opensources
Application Package Download License

Application Package Download License

Adobe
Google for Education
IBM
Matlab
Microsoft
Wordpress
Visual Paradigm
Opensource

Sign Up For Newsletters

Be the First to Know. Sign up for newsletter today

Application Package Repository Telkom University

Portal Application Package Repository Telkom University, for internal use only, empower civitas academica in study and research.

Information

  • Telkom University
  • About Us
  • Contact
  • Forum Discussion
  • FAQ
  • Helpdesk Ticket

Contact Us

  • Ask: Any question please read FAQ
  • Mail: helpdesk@telkomuniversity.ac.id
  • Call: +62 823-1994-9941
  • WA: +62 823-1994-9943
  • Site: Gedung Panambulai. Jl. Telekomunikasi

Copyright © Telkom University. All Rights Reserved. ch

  • FAQ
  • Privacy Policy
  • Term

This Application Package for internal Telkom University only (students and employee). Chiers... Dismiss