How to use stacked bar charts to draw multiple confidence intervals
How to use stacked bar charts to draw multiple confidence intervals as follows
My sample data is as follows: the point estimated coefficient is
coef = [-0.0186
0.0057
-0.0067
-0.0007
0
-0.0295
-0.0517
-0.0651
-0.0689
-0.0862
-0.0866
];
The lower bounds for the point estimated coefficient at 1%, 5%, 10%, 15% and 20% levels are
Lower_Bound = [
-0.061944 -0.051528 -0.04632 -0.042792 -0.040104
-0.04203 -0.03056 -0.024825 -0.02094 -0.01798
-0.05314 -0.04198 -0.0364 -0.03262 -0.02974
-0.044302 -0.033824 -0.028585 -0.025036 -0.022332
0 0 0 0 0
-0.07723 -0.06576 -0.060025 -0.05614 -0.05318
-0.103042 -0.090704 -0.084535 -0.080356 -0.077172
-0.121602 -0.108024 -0.101235 -0.096636 -0.093132
-0.132368 -0.117116 -0.10949 -0.104324 -0.100388
-0.152506 -0.136572 -0.128605 -0.123208 -0.119096
-0.183092 -0.159904 -0.14831 -0.140456 -0.134472
];
The upper bounds for the point estimated coefficient at 1%, 5%, 10%, 15% and 20% levels are
Upper_Bound = [0.024744 0.014328 0.00912 0.005592 0.002904
0.05343 0.04196 0.036225 0.03234 0.02938
0.03974 0.02858 0.023 0.01922 0.01634
0.042902 0.032424 0.027185 0.023636 0.020932
0 0 0 0 0
0.01823 0.00676 0.001025 -0.00286 -0.00582
-0.000358 -0.012696 -0.018865 -0.023044 -0.026228
-0.008598 -0.022176 -0.028965 -0.033564 -0.037068
-0.005432 -0.020684 -0.02831 -0.033476 -0.037412
-0.019894 -0.035828 -0.043795 -0.049192 -0.053304
0.009892 -0.013296 -0.02489 -0.032744 -0.038728
];How to use stacked bar charts to draw multiple confidence intervals as follows
My sample data is as follows: the point estimated coefficient is
coef = [-0.0186
0.0057
-0.0067
-0.0007
0
-0.0295
-0.0517
-0.0651
-0.0689
-0.0862
-0.0866
];
The lower bounds for the point estimated coefficient at 1%, 5%, 10%, 15% and 20% levels are
Lower_Bound = [
-0.061944 -0.051528 -0.04632 -0.042792 -0.040104
-0.04203 -0.03056 -0.024825 -0.02094 -0.01798
-0.05314 -0.04198 -0.0364 -0.03262 -0.02974
-0.044302 -0.033824 -0.028585 -0.025036 -0.022332
0 0 0 0 0
-0.07723 -0.06576 -0.060025 -0.05614 -0.05318
-0.103042 -0.090704 -0.084535 -0.080356 -0.077172
-0.121602 -0.108024 -0.101235 -0.096636 -0.093132
-0.132368 -0.117116 -0.10949 -0.104324 -0.100388
-0.152506 -0.136572 -0.128605 -0.123208 -0.119096
-0.183092 -0.159904 -0.14831 -0.140456 -0.134472
];
The upper bounds for the point estimated coefficient at 1%, 5%, 10%, 15% and 20% levels are
Upper_Bound = [0.024744 0.014328 0.00912 0.005592 0.002904
0.05343 0.04196 0.036225 0.03234 0.02938
0.03974 0.02858 0.023 0.01922 0.01634
0.042902 0.032424 0.027185 0.023636 0.020932
0 0 0 0 0
0.01823 0.00676 0.001025 -0.00286 -0.00582
-0.000358 -0.012696 -0.018865 -0.023044 -0.026228
-0.008598 -0.022176 -0.028965 -0.033564 -0.037068
-0.005432 -0.020684 -0.02831 -0.033476 -0.037412
-0.019894 -0.035828 -0.043795 -0.049192 -0.053304
0.009892 -0.013296 -0.02489 -0.032744 -0.038728
]; How to use stacked bar charts to draw multiple confidence intervals as follows
My sample data is as follows: the point estimated coefficient is
coef = [-0.0186
0.0057
-0.0067
-0.0007
0
-0.0295
-0.0517
-0.0651
-0.0689
-0.0862
-0.0866
];
The lower bounds for the point estimated coefficient at 1%, 5%, 10%, 15% and 20% levels are
Lower_Bound = [
-0.061944 -0.051528 -0.04632 -0.042792 -0.040104
-0.04203 -0.03056 -0.024825 -0.02094 -0.01798
-0.05314 -0.04198 -0.0364 -0.03262 -0.02974
-0.044302 -0.033824 -0.028585 -0.025036 -0.022332
0 0 0 0 0
-0.07723 -0.06576 -0.060025 -0.05614 -0.05318
-0.103042 -0.090704 -0.084535 -0.080356 -0.077172
-0.121602 -0.108024 -0.101235 -0.096636 -0.093132
-0.132368 -0.117116 -0.10949 -0.104324 -0.100388
-0.152506 -0.136572 -0.128605 -0.123208 -0.119096
-0.183092 -0.159904 -0.14831 -0.140456 -0.134472
];
The upper bounds for the point estimated coefficient at 1%, 5%, 10%, 15% and 20% levels are
Upper_Bound = [0.024744 0.014328 0.00912 0.005592 0.002904
0.05343 0.04196 0.036225 0.03234 0.02938
0.03974 0.02858 0.023 0.01922 0.01634
0.042902 0.032424 0.027185 0.023636 0.020932
0 0 0 0 0
0.01823 0.00676 0.001025 -0.00286 -0.00582
-0.000358 -0.012696 -0.018865 -0.023044 -0.026228
-0.008598 -0.022176 -0.028965 -0.033564 -0.037068
-0.005432 -0.020684 -0.02831 -0.033476 -0.037412
-0.019894 -0.035828 -0.043795 -0.049192 -0.053304
0.009892 -0.013296 -0.02489 -0.032744 -0.038728
]; stack, bar, baseline MATLAB Answers — New Questions