SURVEY BY MULTIPLE BACKSIGHT ANGLE MEASUREMENT
Calculate the approximate PT-TM06 coordinates of the point (M0, P0) using one of the methods taught in theoretical classes (e.g., Mayer’s method), using three of the targeted points (the configuration of the three chosen points should be the most appropriate for resolving the simple inverse intersection); you may (and should) also solve the problem graphically.
Determine the corrections to the coordinates (ΔM, ΔP) and the zero limb bearing (R0) using the Least Squares Method (LSM), using the algorithm for indirect measurements given in theoretical classes.
Determine the adjusted coordinates of the point in question and its elevation, taking the average (most probable value) of all obtained elevation values for the point; given the distance to the targeted points, you should consider the curvature of the Earth and the atmospheric refraction effect (k=0.14) in the elevation calculation.
I can atatch the measurements
The first point i was able to do (i think), the rest is what messes with my train of though
%Pontos visados
%Clérigos
clr_M = -40420.448;
clr_P = 164167.927;
clr_H = 141.13;
%Direta Progressiva (dp)
clr_ah_dp = 102.8444;
clr_av_dp = 97.7522;
%Inversa Regressiva (ir)
clr_ah_ir = 302.8566;
clr_av_ir = 302.2442;
%Inversa Progressiva (ip)
clr_ah_ip = 302.8561;
clr_av_ip = 302.2467;
%Direta Regressiva (dr)
clr_ah_dr = 102.8617;
clr_av_dr = 97.7503;
%Câmara municipal do porto
cm_M = -40088.726;
cm_P = 164636.884;
cm_H = 152.33;
%Direta Progressiva (dp)
cm_ah_dp = 129.6582;
cm_av_dp = 97.4767;
%Inversa Regressiva (ir)
cm_ah_ir = 329.6599;
cm_av_ir = 302.5056;
%Inversa Progressiva (ip)
cm_ah_ip =329.6628;
cm_av_ip =302.3095;
%Direta Regressiva (dr)
cm_ah_dr = 129.6708;
cm_av_dr = 97.4755;
%igreja da lapa
il_M = -40209.736;
il_P = 165426.432;
il_H = 176.03;
%Direta Progressiva (dp)
il_ah_dp = 137.6340 ;
il_av_dp = 97.6790;
%Inversa Regressiva (ir)
il_ah_ir = 337.6339;
il_av_ir = 302.3148;
%Inversa Progressiva (ip)
il_ah_ip = 337.6455;
il_av_ip = 302.3175;
%Direta Regressiva (dr)
il_ah_dr = 137.6501;
il_av_dr = 97.6786;
%Jornal de Noticias
jn_M = -39934.342;
jn_P = 165011.012;
jn_H = 170.79;
%Direta Progressiva (dp)
jn_ah_dp = 141.7560;
jn_av_dp = 97.2225;
%Inversa Regressiva (ir)
jn_ah_ir = 341.7596;
jn_av_ir = 302.7853;
%Inversa Progressiva (ip)
jn_ah_ip = 341.7649;
jn_av_ip = 302.7908;
%Direta Regressiva (dr)
jn_ah_dr = 141.7680;
jn_av_dr = 97.2106;
%Depósito de água
da_M = -39336.276;
da_P = 165413.16;
da_H = 185.48;
%Direta Progressiva (dp)
da_ah_dp = 163.9711;
da_av_dp = 97.1290;
%Inversa Regressiva (ir)
da_ah_ir = 363.9730;
da_av_ir = 302.8053;
%Inversa Progressiva (ip)
da_ah_ip = 363.9772;
da_av_ip = 302.8023;
%Direta Regressiva (dr)
da_ah_dr = 163.9848;
da_av_dr = 97.1911;
%Igreja do Bonfim
ib_M = -38614.9280;
ib_P = 164792.1040;
ib_H = 162.20;
%Direta Progressiva (dp)
ib_ah_dp = 194.7617;
ib_av_dp = 97.3887;
%Inversa Regressiva (ir)
ib_ah_ir = 394.7702;
ib_av_ir = 302.5992;
%Inversa Progressiva (ip)
ib_ah_ip = 394.7724;
ib_av_ip = 302.5994;
%Direta Regressiva (dr)
ib_ah_dr = 194.7772;
ib_av_dr = 97.3917;
%Gondomar(v.g.)
g_M = -33142.6520;
g_P = 163536.09;
g_H = 203.27;
%Direta Progressiva (dp)
g_ah_dp = 260.0913;
g_av_dp = 98.9460;
%Inversa Regressiva (ir)
g_ah_ir = 60.0908;
g_av_ir = 301.0498;
%Inversa Progressiva (ip)
g_ah_ip = 60.0992;
g_av_ip = 301.0477;
%Direta Regressiva (dr)
g_ah_dr = 260.0978;
g_av_dr = 98.9363;
%
%3 Pontos- Jornal de noticias, Igreja do bonfim e depósito de água-
dir_clr = ((clr_ah_dp+clr_ah_ir-200+clr_ah_ip-200+clr_ah_dr)/4)*(180/200);
dir_cm = ((cm_ah_dp+cm_ah_ir-200+cm_ah_ip-200+cm_ah_dr)/4)*(180/200);
dir_il = ((il_ah_dp+il_ah_ir-200+il_ah_ip-200+il_ah_dr)/4)*(180/200);
dir_jn = ((jn_ah_dp+jn_ah_ir-200+jn_ah_ip-200+jn_ah_dr)/4)*(180/200);
dir_da = ((da_ah_dp+da_ah_ir-200+da_ah_ip-200+da_ah_dr)/4)*(180/200);
dir_ib = ((ib_ah_dp+ib_ah_ir-200+ib_ah_ip-200+ib_ah_dr)/4)*(180/200);
dir_g = ((g_ah_dp+g_ah_ir-200+g_ah_ip-200+g_ah_dr+400)/4)*(180/200);
%Calculo rumos BA e BC (ponto A – Câmara do Porto, B- Depósito de água e C-
%Igreja do bonfim)
R_BA = atand((cm_M-da_M)/(cm_P-da_P))+180;
R_BC = atand((ib_M-da_M)/(ib_P-da_P))+180;
%Calculo do angulo phi
a_phi=R_BA-R_BC;
%Calculo distâncias horizontais
d_BA = sqrt((cm_M-da_M)^2+(cm_P-da_P)^2);
d_BC = sqrt((ib_M-da_M)^2+(ib_P-da_P)^2);
%Calculo do R
a_alpha = dir_da – dir_cm;
a_beta = dir_ib – dir_da;
R = 360-(a_alpha+a_beta+a_phi);
%Calculo do S
S=(d_BC+sind(a_alpha))/(d_BA*sind(a_beta));
%Calculo do gama
a_gama = atand(sind(R)/(S+cosd(R)))+90;
%Calculo tetha
a_theta=R-a_gama;
%calculo phi1
a_phi1= 180-(a_theta+a_alpha);
%Calculo distancia Camara do Porto(A) ao ponto P(local observação)
d_AP=d_BA*((sind(a_phi1))/sind(a_alpha));
%Calculo Rumo AP
RAP = R_BA-180+a_theta;
%Coordenadas aproximadas M0 e P0
M0 = cm_M + d_AP*sind(RAP);
P0 = cm_P + d_AP*cosd(RAP);
%Distancia ao ponto aproximado
d_clr = sqrt((M0-clr_M)^2+(P0-clr_P)^2);
d_cm = sqrt((M0-cm_M)^2+(P0-cm_P)^2);
d_il = sqrt((M0-il_M)^2+(P0-il_P)^2);
d_jn = sqrt((M0-jn_M)^2+(P0-jn_P)^2);
d_da = sqrt((M0-da_M)^2+(P0-da_P)^2);
d_ib = sqrt((M0-ib_M)^2+(P0-ib_P)^2);
d_g = sqrt((M0-g_M)^2+(P0-g_P)^2);
%Rumos ao ponto aproximado
r_clr = atand((clr_M-M0)/(clr_P-P0));
r_cm = atand((cm_M-M0)/(cm_P-P0));
r_il = atand((il_M-M0)/(il_P-P0))+360;
r_jn = atand((jn_M-M0)/(jn_P-P0));
r_da = atand((da_M-M0)/(da_P-P0));
r_ib = atand((ib_M-M0)/(ib_P-P0))+360;
r_g = atand((g_M-M0)/(g_P-P0))+360;
%Matriz dos coeficientes
A = [-(clr_P-P0)/d_clr^2*180/pi (clr_M-M0)/d_clr^2*180/pi -1;
-(cm_P-P0)/d_cm^2*180/pi (cm_M-M0)/d_cm^2*180/pi -1;
-(il_P-P0)/d_il^2*180/pi (il_M-M0)/d_il^2*180/pi -1;
-(jn_P-P0)/d_jn^2*180/pi (jn_M-M0)/d_jn^2*180/pi -1;
-(da_P-P0)/d_da^2*180/pi (da_M-M0)/d_da^2*180/pi -1;
-(ib_P-P0)/d_ib^2*180/pi (ib_M-M0)/d_ib^2*180/pi -1;
-(g_P-P0)/d_g^2*180/pi (g_M-M0)/d_g^2*180/pi -1];
%Vetor b
b = [dir_clr-r_clr;
dir_cm-r_cm;
dir_il-r_il;
dir_jn-r_jn;
dir_da-r_da;
dir_ib-r_ib;
dir_g-r_g];
%Matriz dos pesos
W=eye(7);
%Matriz equações normais
N=A’*W*A ;
%Calculo correções coordenadas
delta = inv(N) * A’ * W * b;
%coordenadas compensadas
M0_f=M0+delta(1);
P0_f=P0+delta(2);Calculate the approximate PT-TM06 coordinates of the point (M0, P0) using one of the methods taught in theoretical classes (e.g., Mayer’s method), using three of the targeted points (the configuration of the three chosen points should be the most appropriate for resolving the simple inverse intersection); you may (and should) also solve the problem graphically.
Determine the corrections to the coordinates (ΔM, ΔP) and the zero limb bearing (R0) using the Least Squares Method (LSM), using the algorithm for indirect measurements given in theoretical classes.
Determine the adjusted coordinates of the point in question and its elevation, taking the average (most probable value) of all obtained elevation values for the point; given the distance to the targeted points, you should consider the curvature of the Earth and the atmospheric refraction effect (k=0.14) in the elevation calculation.
I can atatch the measurements
The first point i was able to do (i think), the rest is what messes with my train of though
%Pontos visados
%Clérigos
clr_M = -40420.448;
clr_P = 164167.927;
clr_H = 141.13;
%Direta Progressiva (dp)
clr_ah_dp = 102.8444;
clr_av_dp = 97.7522;
%Inversa Regressiva (ir)
clr_ah_ir = 302.8566;
clr_av_ir = 302.2442;
%Inversa Progressiva (ip)
clr_ah_ip = 302.8561;
clr_av_ip = 302.2467;
%Direta Regressiva (dr)
clr_ah_dr = 102.8617;
clr_av_dr = 97.7503;
%Câmara municipal do porto
cm_M = -40088.726;
cm_P = 164636.884;
cm_H = 152.33;
%Direta Progressiva (dp)
cm_ah_dp = 129.6582;
cm_av_dp = 97.4767;
%Inversa Regressiva (ir)
cm_ah_ir = 329.6599;
cm_av_ir = 302.5056;
%Inversa Progressiva (ip)
cm_ah_ip =329.6628;
cm_av_ip =302.3095;
%Direta Regressiva (dr)
cm_ah_dr = 129.6708;
cm_av_dr = 97.4755;
%igreja da lapa
il_M = -40209.736;
il_P = 165426.432;
il_H = 176.03;
%Direta Progressiva (dp)
il_ah_dp = 137.6340 ;
il_av_dp = 97.6790;
%Inversa Regressiva (ir)
il_ah_ir = 337.6339;
il_av_ir = 302.3148;
%Inversa Progressiva (ip)
il_ah_ip = 337.6455;
il_av_ip = 302.3175;
%Direta Regressiva (dr)
il_ah_dr = 137.6501;
il_av_dr = 97.6786;
%Jornal de Noticias
jn_M = -39934.342;
jn_P = 165011.012;
jn_H = 170.79;
%Direta Progressiva (dp)
jn_ah_dp = 141.7560;
jn_av_dp = 97.2225;
%Inversa Regressiva (ir)
jn_ah_ir = 341.7596;
jn_av_ir = 302.7853;
%Inversa Progressiva (ip)
jn_ah_ip = 341.7649;
jn_av_ip = 302.7908;
%Direta Regressiva (dr)
jn_ah_dr = 141.7680;
jn_av_dr = 97.2106;
%Depósito de água
da_M = -39336.276;
da_P = 165413.16;
da_H = 185.48;
%Direta Progressiva (dp)
da_ah_dp = 163.9711;
da_av_dp = 97.1290;
%Inversa Regressiva (ir)
da_ah_ir = 363.9730;
da_av_ir = 302.8053;
%Inversa Progressiva (ip)
da_ah_ip = 363.9772;
da_av_ip = 302.8023;
%Direta Regressiva (dr)
da_ah_dr = 163.9848;
da_av_dr = 97.1911;
%Igreja do Bonfim
ib_M = -38614.9280;
ib_P = 164792.1040;
ib_H = 162.20;
%Direta Progressiva (dp)
ib_ah_dp = 194.7617;
ib_av_dp = 97.3887;
%Inversa Regressiva (ir)
ib_ah_ir = 394.7702;
ib_av_ir = 302.5992;
%Inversa Progressiva (ip)
ib_ah_ip = 394.7724;
ib_av_ip = 302.5994;
%Direta Regressiva (dr)
ib_ah_dr = 194.7772;
ib_av_dr = 97.3917;
%Gondomar(v.g.)
g_M = -33142.6520;
g_P = 163536.09;
g_H = 203.27;
%Direta Progressiva (dp)
g_ah_dp = 260.0913;
g_av_dp = 98.9460;
%Inversa Regressiva (ir)
g_ah_ir = 60.0908;
g_av_ir = 301.0498;
%Inversa Progressiva (ip)
g_ah_ip = 60.0992;
g_av_ip = 301.0477;
%Direta Regressiva (dr)
g_ah_dr = 260.0978;
g_av_dr = 98.9363;
%
%3 Pontos- Jornal de noticias, Igreja do bonfim e depósito de água-
dir_clr = ((clr_ah_dp+clr_ah_ir-200+clr_ah_ip-200+clr_ah_dr)/4)*(180/200);
dir_cm = ((cm_ah_dp+cm_ah_ir-200+cm_ah_ip-200+cm_ah_dr)/4)*(180/200);
dir_il = ((il_ah_dp+il_ah_ir-200+il_ah_ip-200+il_ah_dr)/4)*(180/200);
dir_jn = ((jn_ah_dp+jn_ah_ir-200+jn_ah_ip-200+jn_ah_dr)/4)*(180/200);
dir_da = ((da_ah_dp+da_ah_ir-200+da_ah_ip-200+da_ah_dr)/4)*(180/200);
dir_ib = ((ib_ah_dp+ib_ah_ir-200+ib_ah_ip-200+ib_ah_dr)/4)*(180/200);
dir_g = ((g_ah_dp+g_ah_ir-200+g_ah_ip-200+g_ah_dr+400)/4)*(180/200);
%Calculo rumos BA e BC (ponto A – Câmara do Porto, B- Depósito de água e C-
%Igreja do bonfim)
R_BA = atand((cm_M-da_M)/(cm_P-da_P))+180;
R_BC = atand((ib_M-da_M)/(ib_P-da_P))+180;
%Calculo do angulo phi
a_phi=R_BA-R_BC;
%Calculo distâncias horizontais
d_BA = sqrt((cm_M-da_M)^2+(cm_P-da_P)^2);
d_BC = sqrt((ib_M-da_M)^2+(ib_P-da_P)^2);
%Calculo do R
a_alpha = dir_da – dir_cm;
a_beta = dir_ib – dir_da;
R = 360-(a_alpha+a_beta+a_phi);
%Calculo do S
S=(d_BC+sind(a_alpha))/(d_BA*sind(a_beta));
%Calculo do gama
a_gama = atand(sind(R)/(S+cosd(R)))+90;
%Calculo tetha
a_theta=R-a_gama;
%calculo phi1
a_phi1= 180-(a_theta+a_alpha);
%Calculo distancia Camara do Porto(A) ao ponto P(local observação)
d_AP=d_BA*((sind(a_phi1))/sind(a_alpha));
%Calculo Rumo AP
RAP = R_BA-180+a_theta;
%Coordenadas aproximadas M0 e P0
M0 = cm_M + d_AP*sind(RAP);
P0 = cm_P + d_AP*cosd(RAP);
%Distancia ao ponto aproximado
d_clr = sqrt((M0-clr_M)^2+(P0-clr_P)^2);
d_cm = sqrt((M0-cm_M)^2+(P0-cm_P)^2);
d_il = sqrt((M0-il_M)^2+(P0-il_P)^2);
d_jn = sqrt((M0-jn_M)^2+(P0-jn_P)^2);
d_da = sqrt((M0-da_M)^2+(P0-da_P)^2);
d_ib = sqrt((M0-ib_M)^2+(P0-ib_P)^2);
d_g = sqrt((M0-g_M)^2+(P0-g_P)^2);
%Rumos ao ponto aproximado
r_clr = atand((clr_M-M0)/(clr_P-P0));
r_cm = atand((cm_M-M0)/(cm_P-P0));
r_il = atand((il_M-M0)/(il_P-P0))+360;
r_jn = atand((jn_M-M0)/(jn_P-P0));
r_da = atand((da_M-M0)/(da_P-P0));
r_ib = atand((ib_M-M0)/(ib_P-P0))+360;
r_g = atand((g_M-M0)/(g_P-P0))+360;
%Matriz dos coeficientes
A = [-(clr_P-P0)/d_clr^2*180/pi (clr_M-M0)/d_clr^2*180/pi -1;
-(cm_P-P0)/d_cm^2*180/pi (cm_M-M0)/d_cm^2*180/pi -1;
-(il_P-P0)/d_il^2*180/pi (il_M-M0)/d_il^2*180/pi -1;
-(jn_P-P0)/d_jn^2*180/pi (jn_M-M0)/d_jn^2*180/pi -1;
-(da_P-P0)/d_da^2*180/pi (da_M-M0)/d_da^2*180/pi -1;
-(ib_P-P0)/d_ib^2*180/pi (ib_M-M0)/d_ib^2*180/pi -1;
-(g_P-P0)/d_g^2*180/pi (g_M-M0)/d_g^2*180/pi -1];
%Vetor b
b = [dir_clr-r_clr;
dir_cm-r_cm;
dir_il-r_il;
dir_jn-r_jn;
dir_da-r_da;
dir_ib-r_ib;
dir_g-r_g];
%Matriz dos pesos
W=eye(7);
%Matriz equações normais
N=A’*W*A ;
%Calculo correções coordenadas
delta = inv(N) * A’ * W * b;
%coordenadas compensadas
M0_f=M0+delta(1);
P0_f=P0+delta(2); Calculate the approximate PT-TM06 coordinates of the point (M0, P0) using one of the methods taught in theoretical classes (e.g., Mayer’s method), using three of the targeted points (the configuration of the three chosen points should be the most appropriate for resolving the simple inverse intersection); you may (and should) also solve the problem graphically.
Determine the corrections to the coordinates (ΔM, ΔP) and the zero limb bearing (R0) using the Least Squares Method (LSM), using the algorithm for indirect measurements given in theoretical classes.
Determine the adjusted coordinates of the point in question and its elevation, taking the average (most probable value) of all obtained elevation values for the point; given the distance to the targeted points, you should consider the curvature of the Earth and the atmospheric refraction effect (k=0.14) in the elevation calculation.
I can atatch the measurements
The first point i was able to do (i think), the rest is what messes with my train of though
%Pontos visados
%Clérigos
clr_M = -40420.448;
clr_P = 164167.927;
clr_H = 141.13;
%Direta Progressiva (dp)
clr_ah_dp = 102.8444;
clr_av_dp = 97.7522;
%Inversa Regressiva (ir)
clr_ah_ir = 302.8566;
clr_av_ir = 302.2442;
%Inversa Progressiva (ip)
clr_ah_ip = 302.8561;
clr_av_ip = 302.2467;
%Direta Regressiva (dr)
clr_ah_dr = 102.8617;
clr_av_dr = 97.7503;
%Câmara municipal do porto
cm_M = -40088.726;
cm_P = 164636.884;
cm_H = 152.33;
%Direta Progressiva (dp)
cm_ah_dp = 129.6582;
cm_av_dp = 97.4767;
%Inversa Regressiva (ir)
cm_ah_ir = 329.6599;
cm_av_ir = 302.5056;
%Inversa Progressiva (ip)
cm_ah_ip =329.6628;
cm_av_ip =302.3095;
%Direta Regressiva (dr)
cm_ah_dr = 129.6708;
cm_av_dr = 97.4755;
%igreja da lapa
il_M = -40209.736;
il_P = 165426.432;
il_H = 176.03;
%Direta Progressiva (dp)
il_ah_dp = 137.6340 ;
il_av_dp = 97.6790;
%Inversa Regressiva (ir)
il_ah_ir = 337.6339;
il_av_ir = 302.3148;
%Inversa Progressiva (ip)
il_ah_ip = 337.6455;
il_av_ip = 302.3175;
%Direta Regressiva (dr)
il_ah_dr = 137.6501;
il_av_dr = 97.6786;
%Jornal de Noticias
jn_M = -39934.342;
jn_P = 165011.012;
jn_H = 170.79;
%Direta Progressiva (dp)
jn_ah_dp = 141.7560;
jn_av_dp = 97.2225;
%Inversa Regressiva (ir)
jn_ah_ir = 341.7596;
jn_av_ir = 302.7853;
%Inversa Progressiva (ip)
jn_ah_ip = 341.7649;
jn_av_ip = 302.7908;
%Direta Regressiva (dr)
jn_ah_dr = 141.7680;
jn_av_dr = 97.2106;
%Depósito de água
da_M = -39336.276;
da_P = 165413.16;
da_H = 185.48;
%Direta Progressiva (dp)
da_ah_dp = 163.9711;
da_av_dp = 97.1290;
%Inversa Regressiva (ir)
da_ah_ir = 363.9730;
da_av_ir = 302.8053;
%Inversa Progressiva (ip)
da_ah_ip = 363.9772;
da_av_ip = 302.8023;
%Direta Regressiva (dr)
da_ah_dr = 163.9848;
da_av_dr = 97.1911;
%Igreja do Bonfim
ib_M = -38614.9280;
ib_P = 164792.1040;
ib_H = 162.20;
%Direta Progressiva (dp)
ib_ah_dp = 194.7617;
ib_av_dp = 97.3887;
%Inversa Regressiva (ir)
ib_ah_ir = 394.7702;
ib_av_ir = 302.5992;
%Inversa Progressiva (ip)
ib_ah_ip = 394.7724;
ib_av_ip = 302.5994;
%Direta Regressiva (dr)
ib_ah_dr = 194.7772;
ib_av_dr = 97.3917;
%Gondomar(v.g.)
g_M = -33142.6520;
g_P = 163536.09;
g_H = 203.27;
%Direta Progressiva (dp)
g_ah_dp = 260.0913;
g_av_dp = 98.9460;
%Inversa Regressiva (ir)
g_ah_ir = 60.0908;
g_av_ir = 301.0498;
%Inversa Progressiva (ip)
g_ah_ip = 60.0992;
g_av_ip = 301.0477;
%Direta Regressiva (dr)
g_ah_dr = 260.0978;
g_av_dr = 98.9363;
%
%3 Pontos- Jornal de noticias, Igreja do bonfim e depósito de água-
dir_clr = ((clr_ah_dp+clr_ah_ir-200+clr_ah_ip-200+clr_ah_dr)/4)*(180/200);
dir_cm = ((cm_ah_dp+cm_ah_ir-200+cm_ah_ip-200+cm_ah_dr)/4)*(180/200);
dir_il = ((il_ah_dp+il_ah_ir-200+il_ah_ip-200+il_ah_dr)/4)*(180/200);
dir_jn = ((jn_ah_dp+jn_ah_ir-200+jn_ah_ip-200+jn_ah_dr)/4)*(180/200);
dir_da = ((da_ah_dp+da_ah_ir-200+da_ah_ip-200+da_ah_dr)/4)*(180/200);
dir_ib = ((ib_ah_dp+ib_ah_ir-200+ib_ah_ip-200+ib_ah_dr)/4)*(180/200);
dir_g = ((g_ah_dp+g_ah_ir-200+g_ah_ip-200+g_ah_dr+400)/4)*(180/200);
%Calculo rumos BA e BC (ponto A – Câmara do Porto, B- Depósito de água e C-
%Igreja do bonfim)
R_BA = atand((cm_M-da_M)/(cm_P-da_P))+180;
R_BC = atand((ib_M-da_M)/(ib_P-da_P))+180;
%Calculo do angulo phi
a_phi=R_BA-R_BC;
%Calculo distâncias horizontais
d_BA = sqrt((cm_M-da_M)^2+(cm_P-da_P)^2);
d_BC = sqrt((ib_M-da_M)^2+(ib_P-da_P)^2);
%Calculo do R
a_alpha = dir_da – dir_cm;
a_beta = dir_ib – dir_da;
R = 360-(a_alpha+a_beta+a_phi);
%Calculo do S
S=(d_BC+sind(a_alpha))/(d_BA*sind(a_beta));
%Calculo do gama
a_gama = atand(sind(R)/(S+cosd(R)))+90;
%Calculo tetha
a_theta=R-a_gama;
%calculo phi1
a_phi1= 180-(a_theta+a_alpha);
%Calculo distancia Camara do Porto(A) ao ponto P(local observação)
d_AP=d_BA*((sind(a_phi1))/sind(a_alpha));
%Calculo Rumo AP
RAP = R_BA-180+a_theta;
%Coordenadas aproximadas M0 e P0
M0 = cm_M + d_AP*sind(RAP);
P0 = cm_P + d_AP*cosd(RAP);
%Distancia ao ponto aproximado
d_clr = sqrt((M0-clr_M)^2+(P0-clr_P)^2);
d_cm = sqrt((M0-cm_M)^2+(P0-cm_P)^2);
d_il = sqrt((M0-il_M)^2+(P0-il_P)^2);
d_jn = sqrt((M0-jn_M)^2+(P0-jn_P)^2);
d_da = sqrt((M0-da_M)^2+(P0-da_P)^2);
d_ib = sqrt((M0-ib_M)^2+(P0-ib_P)^2);
d_g = sqrt((M0-g_M)^2+(P0-g_P)^2);
%Rumos ao ponto aproximado
r_clr = atand((clr_M-M0)/(clr_P-P0));
r_cm = atand((cm_M-M0)/(cm_P-P0));
r_il = atand((il_M-M0)/(il_P-P0))+360;
r_jn = atand((jn_M-M0)/(jn_P-P0));
r_da = atand((da_M-M0)/(da_P-P0));
r_ib = atand((ib_M-M0)/(ib_P-P0))+360;
r_g = atand((g_M-M0)/(g_P-P0))+360;
%Matriz dos coeficientes
A = [-(clr_P-P0)/d_clr^2*180/pi (clr_M-M0)/d_clr^2*180/pi -1;
-(cm_P-P0)/d_cm^2*180/pi (cm_M-M0)/d_cm^2*180/pi -1;
-(il_P-P0)/d_il^2*180/pi (il_M-M0)/d_il^2*180/pi -1;
-(jn_P-P0)/d_jn^2*180/pi (jn_M-M0)/d_jn^2*180/pi -1;
-(da_P-P0)/d_da^2*180/pi (da_M-M0)/d_da^2*180/pi -1;
-(ib_P-P0)/d_ib^2*180/pi (ib_M-M0)/d_ib^2*180/pi -1;
-(g_P-P0)/d_g^2*180/pi (g_M-M0)/d_g^2*180/pi -1];
%Vetor b
b = [dir_clr-r_clr;
dir_cm-r_cm;
dir_il-r_il;
dir_jn-r_jn;
dir_da-r_da;
dir_ib-r_ib;
dir_g-r_g];
%Matriz dos pesos
W=eye(7);
%Matriz equações normais
N=A’*W*A ;
%Calculo correções coordenadas
delta = inv(N) * A’ * W * b;
%coordenadas compensadas
M0_f=M0+delta(1);
P0_f=P0+delta(2); topography, matrices MATLAB Answers — New Questions