Tag Archives: matlab
“Unable to fetch some archives” when running sudo apt-get install matlab-rpi
I’m tyrying to install matlab-rpi on my pi, and I have several errors that begin with "Failed to fetch", and the error at the bottom says "E: Unable to fetch some archives, maybe run apt-get update or try with –fix-missing?". I am running Raspbian bullseye.I’m tyrying to install matlab-rpi on my pi, and I have several errors that begin with "Failed to fetch", and the error at the bottom says "E: Unable to fetch some archives, maybe run apt-get update or try with –fix-missing?". I am running Raspbian bullseye. I’m tyrying to install matlab-rpi on my pi, and I have several errors that begin with "Failed to fetch", and the error at the bottom says "E: Unable to fetch some archives, maybe run apt-get update or try with –fix-missing?". I am running Raspbian bullseye. raspberry pi MATLAB Answers — New Questions
run the system for 24 hours in short period
hello,
so i have model in simulink, it runs for Total time=2 seconds, and sampling time for microgrid=1e-6, sampling time for model predictive controller=0.1; the thing is when i run the simulation, it takes about 3 to 4 minutes to finish because of the sampling time, when in fact the Total time is 2 seconds, and i want the axe "X" to show results for 24 hours, so what can i do?
obiously i cannot run it for 24 hours, it will take few days to finish,
thanks in advancehello,
so i have model in simulink, it runs for Total time=2 seconds, and sampling time for microgrid=1e-6, sampling time for model predictive controller=0.1; the thing is when i run the simulation, it takes about 3 to 4 minutes to finish because of the sampling time, when in fact the Total time is 2 seconds, and i want the axe "X" to show results for 24 hours, so what can i do?
obiously i cannot run it for 24 hours, it will take few days to finish,
thanks in advance hello,
so i have model in simulink, it runs for Total time=2 seconds, and sampling time for microgrid=1e-6, sampling time for model predictive controller=0.1; the thing is when i run the simulation, it takes about 3 to 4 minutes to finish because of the sampling time, when in fact the Total time is 2 seconds, and i want the axe "X" to show results for 24 hours, so what can i do?
obiously i cannot run it for 24 hours, it will take few days to finish,
thanks in advance simulation time, sampling time, 24 hours MATLAB Answers — New Questions
Long simulation times with flexible simscape
Hello everybody,
I’ve been using flexible multibody simscape for a few days.
I have found the simulations to be very slow both using the default bodies and using Reduce Order. is this a common problem?
how can i fix it?Hello everybody,
I’ve been using flexible multibody simscape for a few days.
I have found the simulations to be very slow both using the default bodies and using Reduce Order. is this a common problem?
how can i fix it? Hello everybody,
I’ve been using flexible multibody simscape for a few days.
I have found the simulations to be very slow both using the default bodies and using Reduce Order. is this a common problem?
how can i fix it? simscape, simulation, simscape multibody, simscape flexible MATLAB Answers — New Questions
Error sending data to ThingSpeak – Data Intervals??
I am sending data from sensors on a XIAO esp32 S3 – there are 6 fields of data – I have timed to send every 5 minutes. When I initiate the code it sends 2 or 3 sets, but then I get an error message saying ‘Error sending data to ThingSpeak’ – and it doesnt send any more data unless I reset the esp , yet the data is being collected as shown on the serial monitor. I have played around witht the time intervals but no joy. Is it a function of thinkspeak or should I investigate the code?I am sending data from sensors on a XIAO esp32 S3 – there are 6 fields of data – I have timed to send every 5 minutes. When I initiate the code it sends 2 or 3 sets, but then I get an error message saying ‘Error sending data to ThingSpeak’ – and it doesnt send any more data unless I reset the esp , yet the data is being collected as shown on the serial monitor. I have played around witht the time intervals but no joy. Is it a function of thinkspeak or should I investigate the code? I am sending data from sensors on a XIAO esp32 S3 – there are 6 fields of data – I have timed to send every 5 minutes. When I initiate the code it sends 2 or 3 sets, but then I get an error message saying ‘Error sending data to ThingSpeak’ – and it doesnt send any more data unless I reset the esp , yet the data is being collected as shown on the serial monitor. I have played around witht the time intervals but no joy. Is it a function of thinkspeak or should I investigate the code? thingspeak, data, fields MATLAB Answers — New Questions
Missing gpu.lib in R2024a
I am trying to compile CUDA version of Matconvnet on R2024a.
Mex reporting an error of missing gpu.lib and indeed I can’t find it in R2024a. It however, exists in the previous versions, for example R2023b.
Is there a replacement for gpu.lib in R2024a?
Thank you,
IliaI am trying to compile CUDA version of Matconvnet on R2024a.
Mex reporting an error of missing gpu.lib and indeed I can’t find it in R2024a. It however, exists in the previous versions, for example R2023b.
Is there a replacement for gpu.lib in R2024a?
Thank you,
Ilia I am trying to compile CUDA version of Matconvnet on R2024a.
Mex reporting an error of missing gpu.lib and indeed I can’t find it in R2024a. It however, exists in the previous versions, for example R2023b.
Is there a replacement for gpu.lib in R2024a?
Thank you,
Ilia r2024a, gpu.lib MATLAB Answers — New Questions
Using a specific wavelet transform on new ECG signals
I’m working with ECG signals and am trying to use a wavelet technique to reduce some of the noise in various data sets. I was able to use a ‘Continuous Wavelet 1-D using FFT’ technique in the Wavelet Analyzer toolkit to achieve a good response (at least on one sample). I have exported the CWTFT struct to a variable called CWTS and want to apply the same wavelet function on a number of other pieces of data.
My overall goal would be to have a command or function that applies the same wavelet transform I generated to new input data.
I am somewhat of a novice in the wavelet / signal processing realm, so if there are smarter or better ways to approach this, please let me know. I tried several random wavelets and this option seemed to do the best for me.
How I generated the wavelet transformed data: 1-D/FFT -> ‘dog’, 6 parameter, linear analysis, linear synthesis, scale limited to first 16 options
Here are some of the details:
CWTS Contents: CWTS.cfs, CWTS.scales, CWTS.frequencies, CWTS.omega, CWTS.meanSIG, CWTS.dt, CWTS.wav
Here are the pre / post transform plots of the data:
Pre-Transform/Raw Data
<</matlabcentral/answers/uploaded_files/71656/PreWavelet.jpg>>
Post-Transform
<</matlabcentral/answers/uploaded_files/71657/post-wavelet.jpg>>
Thanks for any help you guys can offer!I’m working with ECG signals and am trying to use a wavelet technique to reduce some of the noise in various data sets. I was able to use a ‘Continuous Wavelet 1-D using FFT’ technique in the Wavelet Analyzer toolkit to achieve a good response (at least on one sample). I have exported the CWTFT struct to a variable called CWTS and want to apply the same wavelet function on a number of other pieces of data.
My overall goal would be to have a command or function that applies the same wavelet transform I generated to new input data.
I am somewhat of a novice in the wavelet / signal processing realm, so if there are smarter or better ways to approach this, please let me know. I tried several random wavelets and this option seemed to do the best for me.
How I generated the wavelet transformed data: 1-D/FFT -> ‘dog’, 6 parameter, linear analysis, linear synthesis, scale limited to first 16 options
Here are some of the details:
CWTS Contents: CWTS.cfs, CWTS.scales, CWTS.frequencies, CWTS.omega, CWTS.meanSIG, CWTS.dt, CWTS.wav
Here are the pre / post transform plots of the data:
Pre-Transform/Raw Data
<</matlabcentral/answers/uploaded_files/71656/PreWavelet.jpg>>
Post-Transform
<</matlabcentral/answers/uploaded_files/71657/post-wavelet.jpg>>
Thanks for any help you guys can offer! I’m working with ECG signals and am trying to use a wavelet technique to reduce some of the noise in various data sets. I was able to use a ‘Continuous Wavelet 1-D using FFT’ technique in the Wavelet Analyzer toolkit to achieve a good response (at least on one sample). I have exported the CWTFT struct to a variable called CWTS and want to apply the same wavelet function on a number of other pieces of data.
My overall goal would be to have a command or function that applies the same wavelet transform I generated to new input data.
I am somewhat of a novice in the wavelet / signal processing realm, so if there are smarter or better ways to approach this, please let me know. I tried several random wavelets and this option seemed to do the best for me.
How I generated the wavelet transformed data: 1-D/FFT -> ‘dog’, 6 parameter, linear analysis, linear synthesis, scale limited to first 16 options
Here are some of the details:
CWTS Contents: CWTS.cfs, CWTS.scales, CWTS.frequencies, CWTS.omega, CWTS.meanSIG, CWTS.dt, CWTS.wav
Here are the pre / post transform plots of the data:
Pre-Transform/Raw Data
<</matlabcentral/answers/uploaded_files/71656/PreWavelet.jpg>>
Post-Transform
<</matlabcentral/answers/uploaded_files/71657/post-wavelet.jpg>>
Thanks for any help you guys can offer! wavelet, ecg, transform, signal processing, fft MATLAB Answers — New Questions
Why is my solution incorrect here? How to implement the boundary conditions correctly
I am trying to solve for a 1D BVP with Neumann boundary conditions. I am using chebyshev derivative and so to implement these BCs I am initially replacing the first/last row of the second derivative to the values of first/last row of the first derivative and set them to zero so that u'(-1)=u'(1)=0 (i.e. first derivative at left and right boundries = 0). I am not sure if that’s what I am doing in the code though because I get completely wrong numerical solution.
clearvars; clc; close all;
N=10;%
[D,x] = cheb(N); D2 = D^2;
%D2(1,:) = D(1,:); %Right
%D2(N+1,:) = D(N+1,:); %Neumann BC at left endpoint (x=-1), esp w/ D
D2([1 N+1],:) = D([1 N+1],:);
%
BC=-D([1 N+1],[1 N+1])D([1 N+1],2:N);
a=-1; b=1;
u =(1/6)*x .*(6*a*b-3*a*x-3*b*x+2* x.^2);
%Exact Solution
figure
plot(x,u);
n =ones(size(u));
dndx = D *n;
dudx = D *u;
prod1 = dndx .* dudx;
du2dx = D * dudx;
prod2 = n .*du2dx;
invN = (1./n) ;
source = prod1 + prod2;
uold = ones(size(u));
max_iter =500;
err_max = 1e-8;
for iterations = 1:max_iter
phikmax_old = (max(abs(uold)));
duoldx =D *uold;
dnudx = dndx .* duoldx;
ffh = source;
RHS = ffh – dnudx;
Stilde =invN .* RHS;
unew = D2Stilde; %
%Enforce BCs
unew([1 N+1],:) = BC*unew(2:N,:);
phikmax = (max(abs(unew)));
if phikmax < err_max
it_error = err_max /2;
else
it_error = abs( phikmax – phikmax_old) / phikmax;
end
if it_error < err_max
break;
end
uold = unew;
end
figure
plot(x,unew,’–rs’,x,(u));
legend(‘Num solution’,’Exact solution’)
Function Cheb is
function [ D, x ] = cheb ( N )
if ( N == 0 )
D = 0.0;
x = 1.0;
return
end
x = cos ( pi * ( 0 : N ) / N )’;
c = [ 2.0; ones(N-1,1); 2.0 ] .* (-1.0).^(0:N)’;
X = repmat ( x, 1, N + 1 );
dX = X – X’;
% Set the off diagonal entries.
D =( c * (1.0 ./ c )’ ) ./ ( dX + ( eye ( N + 1 ) ) );
% Diagonal entries.
D = D – diag ( sum ( D’ ) );
return
endI am trying to solve for a 1D BVP with Neumann boundary conditions. I am using chebyshev derivative and so to implement these BCs I am initially replacing the first/last row of the second derivative to the values of first/last row of the first derivative and set them to zero so that u'(-1)=u'(1)=0 (i.e. first derivative at left and right boundries = 0). I am not sure if that’s what I am doing in the code though because I get completely wrong numerical solution.
clearvars; clc; close all;
N=10;%
[D,x] = cheb(N); D2 = D^2;
%D2(1,:) = D(1,:); %Right
%D2(N+1,:) = D(N+1,:); %Neumann BC at left endpoint (x=-1), esp w/ D
D2([1 N+1],:) = D([1 N+1],:);
%
BC=-D([1 N+1],[1 N+1])D([1 N+1],2:N);
a=-1; b=1;
u =(1/6)*x .*(6*a*b-3*a*x-3*b*x+2* x.^2);
%Exact Solution
figure
plot(x,u);
n =ones(size(u));
dndx = D *n;
dudx = D *u;
prod1 = dndx .* dudx;
du2dx = D * dudx;
prod2 = n .*du2dx;
invN = (1./n) ;
source = prod1 + prod2;
uold = ones(size(u));
max_iter =500;
err_max = 1e-8;
for iterations = 1:max_iter
phikmax_old = (max(abs(uold)));
duoldx =D *uold;
dnudx = dndx .* duoldx;
ffh = source;
RHS = ffh – dnudx;
Stilde =invN .* RHS;
unew = D2Stilde; %
%Enforce BCs
unew([1 N+1],:) = BC*unew(2:N,:);
phikmax = (max(abs(unew)));
if phikmax < err_max
it_error = err_max /2;
else
it_error = abs( phikmax – phikmax_old) / phikmax;
end
if it_error < err_max
break;
end
uold = unew;
end
figure
plot(x,unew,’–rs’,x,(u));
legend(‘Num solution’,’Exact solution’)
Function Cheb is
function [ D, x ] = cheb ( N )
if ( N == 0 )
D = 0.0;
x = 1.0;
return
end
x = cos ( pi * ( 0 : N ) / N )’;
c = [ 2.0; ones(N-1,1); 2.0 ] .* (-1.0).^(0:N)’;
X = repmat ( x, 1, N + 1 );
dX = X – X’;
% Set the off diagonal entries.
D =( c * (1.0 ./ c )’ ) ./ ( dX + ( eye ( N + 1 ) ) );
% Diagonal entries.
D = D – diag ( sum ( D’ ) );
return
end I am trying to solve for a 1D BVP with Neumann boundary conditions. I am using chebyshev derivative and so to implement these BCs I am initially replacing the first/last row of the second derivative to the values of first/last row of the first derivative and set them to zero so that u'(-1)=u'(1)=0 (i.e. first derivative at left and right boundries = 0). I am not sure if that’s what I am doing in the code though because I get completely wrong numerical solution.
clearvars; clc; close all;
N=10;%
[D,x] = cheb(N); D2 = D^2;
%D2(1,:) = D(1,:); %Right
%D2(N+1,:) = D(N+1,:); %Neumann BC at left endpoint (x=-1), esp w/ D
D2([1 N+1],:) = D([1 N+1],:);
%
BC=-D([1 N+1],[1 N+1])D([1 N+1],2:N);
a=-1; b=1;
u =(1/6)*x .*(6*a*b-3*a*x-3*b*x+2* x.^2);
%Exact Solution
figure
plot(x,u);
n =ones(size(u));
dndx = D *n;
dudx = D *u;
prod1 = dndx .* dudx;
du2dx = D * dudx;
prod2 = n .*du2dx;
invN = (1./n) ;
source = prod1 + prod2;
uold = ones(size(u));
max_iter =500;
err_max = 1e-8;
for iterations = 1:max_iter
phikmax_old = (max(abs(uold)));
duoldx =D *uold;
dnudx = dndx .* duoldx;
ffh = source;
RHS = ffh – dnudx;
Stilde =invN .* RHS;
unew = D2Stilde; %
%Enforce BCs
unew([1 N+1],:) = BC*unew(2:N,:);
phikmax = (max(abs(unew)));
if phikmax < err_max
it_error = err_max /2;
else
it_error = abs( phikmax – phikmax_old) / phikmax;
end
if it_error < err_max
break;
end
uold = unew;
end
figure
plot(x,unew,’–rs’,x,(u));
legend(‘Num solution’,’Exact solution’)
Function Cheb is
function [ D, x ] = cheb ( N )
if ( N == 0 )
D = 0.0;
x = 1.0;
return
end
x = cos ( pi * ( 0 : N ) / N )’;
c = [ 2.0; ones(N-1,1); 2.0 ] .* (-1.0).^(0:N)’;
X = repmat ( x, 1, N + 1 );
dX = X – X’;
% Set the off diagonal entries.
D =( c * (1.0 ./ c )’ ) ./ ( dX + ( eye ( N + 1 ) ) );
% Diagonal entries.
D = D – diag ( sum ( D’ ) );
return
end neumann, boundary, condition MATLAB Answers — New Questions
What is the most computationally efficient factorization of a matrix A?
I have an exam in 24 hours for my Linear Algebra and Geometry course and we have a section with MATLAB related questions. In a simulation test, I was asked to "solve the linear system Ax=b by the solution of two triangular systems, using the most computationally efficient factorization of a matrix A". What does this mean? What is "the solution of two triangular systems"? How would I choose the most computationally efficient factorization of a matrix?
The question I am talking about is the following, word for word:
Let Ax = b, a linear system of order 18, where A is a symmetric, tridiagonal matrix with all elements equal to 6 on the main diagonal and to 3 on the superior and inferior codiagonals. The elements of b are linearly spaced numbers in [8,11]. Compute the eigenvalues of A and, based on their properties, solve the linear system Ax = b by the solution of two triangular systems, using the most computationally efficient factorization of A. The 1-norm of the vector obtained by summing the vector that is the solution of the inferior triangular system and the one that is the solution of the superior triangular system is, approximately:
A) 8.4419e+01
B) 3.4638e+00
C) 7.5558e-01
D) 9.5155e-01
E) 6.5559e+01
Now, we went over all this with a friend and even asked chatgpt to give us an idea. In our curriculum, the main factorizations we learned about are the PA=LU, the Choleski, SVD and the QR factorization. We thought maybe after seeing all the eigenvalues are positive, and thus the matrix positive definite, the choleski should be used. But we aren’t really sure. Why would the others be less efficient? With the code chatgpt gave us, tweaked a little here and there, we got the answer right using the choleski. But we really aren’t sure we understand the wording of the question and the systems at play. Here is the code in question:
Thank you in advance for an answer to such a long question.
clear, clc
n = 18;
A = eye(n)*6 + diag(ones(n-1,1), 1)*3 + diag(ones(n-1,1), -1)*3;
b = linspace(8,11,18);
eigens = eig(A)
R = chol(A);
disp("R’*R*x = b so y = R*x = b")
Y = R’b’;
x = RY;
finalVector = x + Y;
norm(finalVector, 1)I have an exam in 24 hours for my Linear Algebra and Geometry course and we have a section with MATLAB related questions. In a simulation test, I was asked to "solve the linear system Ax=b by the solution of two triangular systems, using the most computationally efficient factorization of a matrix A". What does this mean? What is "the solution of two triangular systems"? How would I choose the most computationally efficient factorization of a matrix?
The question I am talking about is the following, word for word:
Let Ax = b, a linear system of order 18, where A is a symmetric, tridiagonal matrix with all elements equal to 6 on the main diagonal and to 3 on the superior and inferior codiagonals. The elements of b are linearly spaced numbers in [8,11]. Compute the eigenvalues of A and, based on their properties, solve the linear system Ax = b by the solution of two triangular systems, using the most computationally efficient factorization of A. The 1-norm of the vector obtained by summing the vector that is the solution of the inferior triangular system and the one that is the solution of the superior triangular system is, approximately:
A) 8.4419e+01
B) 3.4638e+00
C) 7.5558e-01
D) 9.5155e-01
E) 6.5559e+01
Now, we went over all this with a friend and even asked chatgpt to give us an idea. In our curriculum, the main factorizations we learned about are the PA=LU, the Choleski, SVD and the QR factorization. We thought maybe after seeing all the eigenvalues are positive, and thus the matrix positive definite, the choleski should be used. But we aren’t really sure. Why would the others be less efficient? With the code chatgpt gave us, tweaked a little here and there, we got the answer right using the choleski. But we really aren’t sure we understand the wording of the question and the systems at play. Here is the code in question:
Thank you in advance for an answer to such a long question.
clear, clc
n = 18;
A = eye(n)*6 + diag(ones(n-1,1), 1)*3 + diag(ones(n-1,1), -1)*3;
b = linspace(8,11,18);
eigens = eig(A)
R = chol(A);
disp("R’*R*x = b so y = R*x = b")
Y = R’b’;
x = RY;
finalVector = x + Y;
norm(finalVector, 1) I have an exam in 24 hours for my Linear Algebra and Geometry course and we have a section with MATLAB related questions. In a simulation test, I was asked to "solve the linear system Ax=b by the solution of two triangular systems, using the most computationally efficient factorization of a matrix A". What does this mean? What is "the solution of two triangular systems"? How would I choose the most computationally efficient factorization of a matrix?
The question I am talking about is the following, word for word:
Let Ax = b, a linear system of order 18, where A is a symmetric, tridiagonal matrix with all elements equal to 6 on the main diagonal and to 3 on the superior and inferior codiagonals. The elements of b are linearly spaced numbers in [8,11]. Compute the eigenvalues of A and, based on their properties, solve the linear system Ax = b by the solution of two triangular systems, using the most computationally efficient factorization of A. The 1-norm of the vector obtained by summing the vector that is the solution of the inferior triangular system and the one that is the solution of the superior triangular system is, approximately:
A) 8.4419e+01
B) 3.4638e+00
C) 7.5558e-01
D) 9.5155e-01
E) 6.5559e+01
Now, we went over all this with a friend and even asked chatgpt to give us an idea. In our curriculum, the main factorizations we learned about are the PA=LU, the Choleski, SVD and the QR factorization. We thought maybe after seeing all the eigenvalues are positive, and thus the matrix positive definite, the choleski should be used. But we aren’t really sure. Why would the others be less efficient? With the code chatgpt gave us, tweaked a little here and there, we got the answer right using the choleski. But we really aren’t sure we understand the wording of the question and the systems at play. Here is the code in question:
Thank you in advance for an answer to such a long question.
clear, clc
n = 18;
A = eye(n)*6 + diag(ones(n-1,1), 1)*3 + diag(ones(n-1,1), -1)*3;
b = linspace(8,11,18);
eigens = eig(A)
R = chol(A);
disp("R’*R*x = b so y = R*x = b")
Y = R’b’;
x = RY;
finalVector = x + Y;
norm(finalVector, 1) efficiency, factorization MATLAB Answers — New Questions
How can I have a data store that connect to out of model in Simulink system composer?
Hello guys,
i have a project that i want implement on hardware with microcontroller (STM32f103VGT).
part of my project such as control unit, protocol unit , … is in simulink and other parts such as GUI Control,Hardware control ,… are in other IDE (Keil IDE).
i need a global and shared data store in system composer and connect this data store to other part of project out of MATLAB.
i have a lot of variables and structures that are common between Simulink and other IDE. all variables after reset will back to initial values.
which tool or tools in system composer can help to make a global data store can convert to C code by EMBEDDED Coder?Hello guys,
i have a project that i want implement on hardware with microcontroller (STM32f103VGT).
part of my project such as control unit, protocol unit , … is in simulink and other parts such as GUI Control,Hardware control ,… are in other IDE (Keil IDE).
i need a global and shared data store in system composer and connect this data store to other part of project out of MATLAB.
i have a lot of variables and structures that are common between Simulink and other IDE. all variables after reset will back to initial values.
which tool or tools in system composer can help to make a global data store can convert to C code by EMBEDDED Coder? Hello guys,
i have a project that i want implement on hardware with microcontroller (STM32f103VGT).
part of my project such as control unit, protocol unit , … is in simulink and other parts such as GUI Control,Hardware control ,… are in other IDE (Keil IDE).
i need a global and shared data store in system composer and connect this data store to other part of project out of MATLAB.
i have a lot of variables and structures that are common between Simulink and other IDE. all variables after reset will back to initial values.
which tool or tools in system composer can help to make a global data store can convert to C code by EMBEDDED Coder? system_composer, simulink MATLAB Answers — New Questions
Bad resolution of Dashboard Displays after printing to PDF
Hello everyone,
I´ve got a model composed of several subsystems. Those are associated with a small table consisting of some annotations and Dashboard Displays. Now, while zooming in/out in Simulink, the resolution of every part is adjusted. So, everything stays well readable, also the numbers in the displays.
But when I try now to print the model to PDF, the resolution of the Dashboard Displays seems to be "stucked". Zooming in leads to pixelated numbers while the rest of the model is well readable (see attached picture).
Anyone faced that problem before and got a workaround?
Thanks in advanceHello everyone,
I´ve got a model composed of several subsystems. Those are associated with a small table consisting of some annotations and Dashboard Displays. Now, while zooming in/out in Simulink, the resolution of every part is adjusted. So, everything stays well readable, also the numbers in the displays.
But when I try now to print the model to PDF, the resolution of the Dashboard Displays seems to be "stucked". Zooming in leads to pixelated numbers while the rest of the model is well readable (see attached picture).
Anyone faced that problem before and got a workaround?
Thanks in advance Hello everyone,
I´ve got a model composed of several subsystems. Those are associated with a small table consisting of some annotations and Dashboard Displays. Now, while zooming in/out in Simulink, the resolution of every part is adjusted. So, everything stays well readable, also the numbers in the displays.
But when I try now to print the model to PDF, the resolution of the Dashboard Displays seems to be "stucked". Zooming in leads to pixelated numbers while the rest of the model is well readable (see attached picture).
Anyone faced that problem before and got a workaround?
Thanks in advance print pdf, dashboard displays, resolution MATLAB Answers — New Questions
Why am i getting this error?
### Starting build procedure for: miniproject ### Generating code and artifacts to ‘Model specific’ folder structure ### Generating code into build folder: C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtw
The model miniproject is configured to simulate flush-to-zero (FTZ) behavior, but is using normal mode simulation. To observe FTZ behavior, simulate the model using an accelerated mode.
Component:Simulink | Category:Model
### Invoking Target Language Compiler on miniproject.rtw ### Using System Target File: F:matlabrtwcertert.tlc ### Loading TLC function libraries ### Initial pass through model to cache user defined code ### Caching model source code ### Writing header file miniproject_types.h ### Writing header file miniproject.h ### Writing header file rtwtypes.h ### Writing source file miniproject.c ### Writing header file miniproject_private.h . ### Writing source file miniproject_data.c ### Writing header file rtmodel.h ### Writing source file ert_main.c ### TLC code generation complete. ### Saving binary information cache.
Code Composer Studio Project
### Creating CCS Project at : C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtwCCS_Project ### CCS project created successfully Open project in Code Composer Studio.
### Using toolchain: Texas Instruments Code Composer Studio (C2000) ### Creating ‘C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtwminiproject.mk’ … ### Building ‘miniproject’: "F:matlabbinwin64gmake" -B DEPRULES=0 -j7 -f miniproject.mk all C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtw>cd . C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtw>if "all" == "" ("F:matlabbinwin64gmake" -B DEPRULES=0 -j7 -f miniproject.mk all ) else ("F:matlabbinwin64gmake" -B DEPRULES=0 -j7 -f miniproject.mk all ) gmake: *** No rule to make target `C:/Users/rajshri’, needed by `MW_c28xx_csl.obj’. Stop. C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtw>echo The make command returned an error of 2 The make command returned an error of 2 C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtw>exit /B 1 ### Build procedure for miniproject aborted due to an error.
Build Summary
Top model targets built: Model Action Rebuild Reason ======================================================================= miniproject Failed Code generation information file does not exist. 0 of 1 models built (0 models already up to date) Build duration: 0h 0m 6.305s
Error(s) encountered while building "miniproject"
Component:Simulink | Category:Block diagram error### Starting build procedure for: miniproject ### Generating code and artifacts to ‘Model specific’ folder structure ### Generating code into build folder: C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtw
The model miniproject is configured to simulate flush-to-zero (FTZ) behavior, but is using normal mode simulation. To observe FTZ behavior, simulate the model using an accelerated mode.
Component:Simulink | Category:Model
### Invoking Target Language Compiler on miniproject.rtw ### Using System Target File: F:matlabrtwcertert.tlc ### Loading TLC function libraries ### Initial pass through model to cache user defined code ### Caching model source code ### Writing header file miniproject_types.h ### Writing header file miniproject.h ### Writing header file rtwtypes.h ### Writing source file miniproject.c ### Writing header file miniproject_private.h . ### Writing source file miniproject_data.c ### Writing header file rtmodel.h ### Writing source file ert_main.c ### TLC code generation complete. ### Saving binary information cache.
Code Composer Studio Project
### Creating CCS Project at : C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtwCCS_Project ### CCS project created successfully Open project in Code Composer Studio.
### Using toolchain: Texas Instruments Code Composer Studio (C2000) ### Creating ‘C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtwminiproject.mk’ … ### Building ‘miniproject’: "F:matlabbinwin64gmake" -B DEPRULES=0 -j7 -f miniproject.mk all C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtw>cd . C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtw>if "all" == "" ("F:matlabbinwin64gmake" -B DEPRULES=0 -j7 -f miniproject.mk all ) else ("F:matlabbinwin64gmake" -B DEPRULES=0 -j7 -f miniproject.mk all ) gmake: *** No rule to make target `C:/Users/rajshri’, needed by `MW_c28xx_csl.obj’. Stop. C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtw>echo The make command returned an error of 2 The make command returned an error of 2 C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtw>exit /B 1 ### Build procedure for miniproject aborted due to an error.
Build Summary
Top model targets built: Model Action Rebuild Reason ======================================================================= miniproject Failed Code generation information file does not exist. 0 of 1 models built (0 models already up to date) Build duration: 0h 0m 6.305s
Error(s) encountered while building "miniproject"
Component:Simulink | Category:Block diagram error ### Starting build procedure for: miniproject ### Generating code and artifacts to ‘Model specific’ folder structure ### Generating code into build folder: C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtw
The model miniproject is configured to simulate flush-to-zero (FTZ) behavior, but is using normal mode simulation. To observe FTZ behavior, simulate the model using an accelerated mode.
Component:Simulink | Category:Model
### Invoking Target Language Compiler on miniproject.rtw ### Using System Target File: F:matlabrtwcertert.tlc ### Loading TLC function libraries ### Initial pass through model to cache user defined code ### Caching model source code ### Writing header file miniproject_types.h ### Writing header file miniproject.h ### Writing header file rtwtypes.h ### Writing source file miniproject.c ### Writing header file miniproject_private.h . ### Writing source file miniproject_data.c ### Writing header file rtmodel.h ### Writing source file ert_main.c ### TLC code generation complete. ### Saving binary information cache.
Code Composer Studio Project
### Creating CCS Project at : C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtwCCS_Project ### CCS project created successfully Open project in Code Composer Studio.
### Using toolchain: Texas Instruments Code Composer Studio (C2000) ### Creating ‘C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtwminiproject.mk’ … ### Building ‘miniproject’: "F:matlabbinwin64gmake" -B DEPRULES=0 -j7 -f miniproject.mk all C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtw>cd . C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtw>if "all" == "" ("F:matlabbinwin64gmake" -B DEPRULES=0 -j7 -f miniproject.mk all ) else ("F:matlabbinwin64gmake" -B DEPRULES=0 -j7 -f miniproject.mk all ) gmake: *** No rule to make target `C:/Users/rajshri’, needed by `MW_c28xx_csl.obj’. Stop. C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtw>echo The make command returned an error of 2 The make command returned an error of 2 C:Usersrajshri simhadriOneDriveDesktoptestminiproject_ert_rtw>exit /B 1 ### Build procedure for miniproject aborted due to an error.
Build Summary
Top model targets built: Model Action Rebuild Reason ======================================================================= miniproject Failed Code generation information file does not exist. 0 of 1 models built (0 models already up to date) Build duration: 0h 0m 6.305s
Error(s) encountered while building "miniproject"
Component:Simulink | Category:Block diagram error simulink, simulation, build, run MATLAB Answers — New Questions
Why does parpool sometimes fail to initialize seemingly randomly and sometimes it works?
Hello everyone,
this is my first question so please be lenient with me.
I am using the following code to read multiple .his image sequences and then save each image of the sequences to a single .tif file.
parpool(8)
im=num_dithering*numICpoints;
parfor ii=1:num_dithering
temp=zeros(sizesequence);
for jj=1:numICpoints
temp=temp+double(readHISfile1([projectionFolder,sprintf(‘proj_dither_%01d_IC_%01d.his’,ii-1,jj-1)]));
end
temp=temp/numICpoints;
for i=1:numOfProj
imwrite(uint16(squeeze(temp(:,:,i))),[tempFolder,sprintf(‘proj_%04d_dither_%01d.tif’,i,ii)])
end
end
disp("saved raw projections")
delete(gcp)
I noticed that every few times i try to do this initializing the interactive session fails and i get this error message:
Error using parallel.internal.pool.InteractiveClient>iThrowWithCause (line
678)
Failed to initialize the interactive session.
Error using
parallel.internal.pool.InteractiveClient>iThrowIfBadParallelJobStatus
(line 818)
The interactive communicating job finished with no message.
I already checked if i run out of memory, but it seems all fine. When I get this error message I usually just rerun my script and then it works with no change of the code. Does anyone have an idea what the problem could be? I am using the Matlab version 9.9.0.1538559 (R2020b) Update 3. Thanks for your help!Hello everyone,
this is my first question so please be lenient with me.
I am using the following code to read multiple .his image sequences and then save each image of the sequences to a single .tif file.
parpool(8)
im=num_dithering*numICpoints;
parfor ii=1:num_dithering
temp=zeros(sizesequence);
for jj=1:numICpoints
temp=temp+double(readHISfile1([projectionFolder,sprintf(‘proj_dither_%01d_IC_%01d.his’,ii-1,jj-1)]));
end
temp=temp/numICpoints;
for i=1:numOfProj
imwrite(uint16(squeeze(temp(:,:,i))),[tempFolder,sprintf(‘proj_%04d_dither_%01d.tif’,i,ii)])
end
end
disp("saved raw projections")
delete(gcp)
I noticed that every few times i try to do this initializing the interactive session fails and i get this error message:
Error using parallel.internal.pool.InteractiveClient>iThrowWithCause (line
678)
Failed to initialize the interactive session.
Error using
parallel.internal.pool.InteractiveClient>iThrowIfBadParallelJobStatus
(line 818)
The interactive communicating job finished with no message.
I already checked if i run out of memory, but it seems all fine. When I get this error message I usually just rerun my script and then it works with no change of the code. Does anyone have an idea what the problem could be? I am using the Matlab version 9.9.0.1538559 (R2020b) Update 3. Thanks for your help! Hello everyone,
this is my first question so please be lenient with me.
I am using the following code to read multiple .his image sequences and then save each image of the sequences to a single .tif file.
parpool(8)
im=num_dithering*numICpoints;
parfor ii=1:num_dithering
temp=zeros(sizesequence);
for jj=1:numICpoints
temp=temp+double(readHISfile1([projectionFolder,sprintf(‘proj_dither_%01d_IC_%01d.his’,ii-1,jj-1)]));
end
temp=temp/numICpoints;
for i=1:numOfProj
imwrite(uint16(squeeze(temp(:,:,i))),[tempFolder,sprintf(‘proj_%04d_dither_%01d.tif’,i,ii)])
end
end
disp("saved raw projections")
delete(gcp)
I noticed that every few times i try to do this initializing the interactive session fails and i get this error message:
Error using parallel.internal.pool.InteractiveClient>iThrowWithCause (line
678)
Failed to initialize the interactive session.
Error using
parallel.internal.pool.InteractiveClient>iThrowIfBadParallelJobStatus
(line 818)
The interactive communicating job finished with no message.
I already checked if i run out of memory, but it seems all fine. When I get this error message I usually just rerun my script and then it works with no change of the code. Does anyone have an idea what the problem could be? I am using the Matlab version 9.9.0.1538559 (R2020b) Update 3. Thanks for your help! parpool, parfor MATLAB Answers — New Questions
issue with the IP
I am trying to generate an IP from Simulink using the example HDL OFDM Transmitter (openExample(‘whdl/WHDLOFDMTransmitterExample’)). I am using HDL Coder to generate the IP. However, during the process of setting the interface, I am encountering an issue where I cannot set the interface for the ‘txdata’ output in the diagram. My ‘txdata’ output is an imaginary number, and it is giving me an error stating that you cannot set an interface for an imaginary number.
Additionally, when I add the IP to Vivado, I am not seeing the interface for my input ‘data’ and output ‘txdata’. Below, I have included three pictures: the Simulink design, the interface block, and the Vivado IP.
Note: I am using MATLAB 2023b and Vivado 2019.1 versions.I am trying to generate an IP from Simulink using the example HDL OFDM Transmitter (openExample(‘whdl/WHDLOFDMTransmitterExample’)). I am using HDL Coder to generate the IP. However, during the process of setting the interface, I am encountering an issue where I cannot set the interface for the ‘txdata’ output in the diagram. My ‘txdata’ output is an imaginary number, and it is giving me an error stating that you cannot set an interface for an imaginary number.
Additionally, when I add the IP to Vivado, I am not seeing the interface for my input ‘data’ and output ‘txdata’. Below, I have included three pictures: the Simulink design, the interface block, and the Vivado IP.
Note: I am using MATLAB 2023b and Vivado 2019.1 versions. I am trying to generate an IP from Simulink using the example HDL OFDM Transmitter (openExample(‘whdl/WHDLOFDMTransmitterExample’)). I am using HDL Coder to generate the IP. However, during the process of setting the interface, I am encountering an issue where I cannot set the interface for the ‘txdata’ output in the diagram. My ‘txdata’ output is an imaginary number, and it is giving me an error stating that you cannot set an interface for an imaginary number.
Additionally, when I add the IP to Vivado, I am not seeing the interface for my input ‘data’ and output ‘txdata’. Below, I have included three pictures: the Simulink design, the interface block, and the Vivado IP.
Note: I am using MATLAB 2023b and Vivado 2019.1 versions. simulink, hdlcoder, vivado MATLAB Answers — New Questions
The input was too complicated or too big for MATLAB to parse.
hi, i’ve a long code and i receive this error..
To fix it i want to reduce code using vectorialization
for i=1:c
if STR_type(i)==1 %%se sono aggregate
SumCTR_color(b(i),:)= col(i,:); %%cosi nel draw del SumCTR_strum gli do il colore uguale
end
legend_lines(i)=plot(Ax_Eq,XDates,TE_strum(:,i)’,’DisplayName’,STR_name{i},’Color’,col(i,:),’LineWidth’,width_arr(i));
text(Ax_Eq,r-2,TE_strum(end,i),strcat({‘ ‘},num2str(i)),’Color’,col(i,:),’Interpreter’,’none’);
%%******** COLORA OOS *********
if app.OOScolorCheckBox.Value %%mi colora di nero da dove inizia solo l’OOS (se ci sono 4 sistemi prende l’OOS piu’ recente!!)!
if isdatetime(OOS_strum(i))
[~,xx_]=find(OOS_strum(i)<=XDates,1,’first’); %%max perche prendo l’OOS piu’ recente!
plot(Ax_Eq,XDates(xx_:end),TE_strum(xx_:end,i)’,’Color’,"black",’LineWidth’,width_arr(i));
end
end
%%******************************
end
how can i do it? this is a small piece of a big codehi, i’ve a long code and i receive this error..
To fix it i want to reduce code using vectorialization
for i=1:c
if STR_type(i)==1 %%se sono aggregate
SumCTR_color(b(i),:)= col(i,:); %%cosi nel draw del SumCTR_strum gli do il colore uguale
end
legend_lines(i)=plot(Ax_Eq,XDates,TE_strum(:,i)’,’DisplayName’,STR_name{i},’Color’,col(i,:),’LineWidth’,width_arr(i));
text(Ax_Eq,r-2,TE_strum(end,i),strcat({‘ ‘},num2str(i)),’Color’,col(i,:),’Interpreter’,’none’);
%%******** COLORA OOS *********
if app.OOScolorCheckBox.Value %%mi colora di nero da dove inizia solo l’OOS (se ci sono 4 sistemi prende l’OOS piu’ recente!!)!
if isdatetime(OOS_strum(i))
[~,xx_]=find(OOS_strum(i)<=XDates,1,’first’); %%max perche prendo l’OOS piu’ recente!
plot(Ax_Eq,XDates(xx_:end),TE_strum(xx_:end,i)’,’Color’,"black",’LineWidth’,width_arr(i));
end
end
%%******************************
end
how can i do it? this is a small piece of a big code hi, i’ve a long code and i receive this error..
To fix it i want to reduce code using vectorialization
for i=1:c
if STR_type(i)==1 %%se sono aggregate
SumCTR_color(b(i),:)= col(i,:); %%cosi nel draw del SumCTR_strum gli do il colore uguale
end
legend_lines(i)=plot(Ax_Eq,XDates,TE_strum(:,i)’,’DisplayName’,STR_name{i},’Color’,col(i,:),’LineWidth’,width_arr(i));
text(Ax_Eq,r-2,TE_strum(end,i),strcat({‘ ‘},num2str(i)),’Color’,col(i,:),’Interpreter’,’none’);
%%******** COLORA OOS *********
if app.OOScolorCheckBox.Value %%mi colora di nero da dove inizia solo l’OOS (se ci sono 4 sistemi prende l’OOS piu’ recente!!)!
if isdatetime(OOS_strum(i))
[~,xx_]=find(OOS_strum(i)<=XDates,1,’first’); %%max perche prendo l’OOS piu’ recente!
plot(Ax_Eq,XDates(xx_:end),TE_strum(xx_:end,i)’,’Color’,"black",’LineWidth’,width_arr(i));
end
end
%%******************************
end
how can i do it? this is a small piece of a big code the input was too complicated or too big for matla MATLAB Answers — New Questions
Set Column width of Excel through Matlab
Hi, I tried to set the width of a column but i don’t try..
i found a hint here:
http://www.mathworks.com/matlabcentral/fileexchange/23270-set-columns-in-excel-to-auto-fit/content/xlsAutoFitCol.m
and i simply call it (in another file which I open excel) with xlsAutoFitCol(‘myfile.xls’,’Sheet1′,’A:S’); but nothing change…
that’s what appears to me…
http://imageshack.us/photo/my-images/402/catturahi.png/
and what i want…
http://imageshack.us/photo/my-images/689/cattura1yw.png/
Someone can help me?Hi, I tried to set the width of a column but i don’t try..
i found a hint here:
http://www.mathworks.com/matlabcentral/fileexchange/23270-set-columns-in-excel-to-auto-fit/content/xlsAutoFitCol.m
and i simply call it (in another file which I open excel) with xlsAutoFitCol(‘myfile.xls’,’Sheet1′,’A:S’); but nothing change…
that’s what appears to me…
http://imageshack.us/photo/my-images/402/catturahi.png/
and what i want…
http://imageshack.us/photo/my-images/689/cattura1yw.png/
Someone can help me? Hi, I tried to set the width of a column but i don’t try..
i found a hint here:
http://www.mathworks.com/matlabcentral/fileexchange/23270-set-columns-in-excel-to-auto-fit/content/xlsAutoFitCol.m
and i simply call it (in another file which I open excel) with xlsAutoFitCol(‘myfile.xls’,’Sheet1′,’A:S’); but nothing change…
that’s what appears to me…
http://imageshack.us/photo/my-images/402/catturahi.png/
and what i want…
http://imageshack.us/photo/my-images/689/cattura1yw.png/
Someone can help me? column, excel MATLAB Answers — New Questions
How can I accelerate deep learning training using GPU?
I’ve made a simple neural network
It classifies MNIST handwritten digit using fully-connected layers
lgraph_2 = [ …
imageInputLayer([28 28 1])
fullyConnectedLayer(512)
reluLayer
fullyConnectedLayer(256)
reluLayer
fullyConnectedLayer(128)
reluLayer
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
And the options in the neural network is
miniBatchSize = 10;
valFrequency = 5;
options = trainingOptions(‘sgdm’, …
‘MiniBatchSize’,miniBatchSize, …
‘MaxEpochs’,5, …
‘InitialLearnRate’,3e-4, …
‘Shuffle’,’every-epoch’, …
‘ValidationData’,augimdsValidation, …
‘ValidationFrequency’,valFrequency, …
‘Verbose’,true, …
‘Plots’,’training-progress’, …
‘ExecutionEnvironment’, ‘parallel’);
I expected when i use a GPU, it’s training speed will be high
But when I train this network using Macbook(sigle CPU)
it takes 1 hour for around 2500 iterations
And when I use my desktop using RTX 2080Ti,
It takes much longer time to train.
MATLAB detects my GPU properly(I checked the GPU information using gpuDevice)
I don’t know how can I accelerate the training proess.
Thank you in advanceI’ve made a simple neural network
It classifies MNIST handwritten digit using fully-connected layers
lgraph_2 = [ …
imageInputLayer([28 28 1])
fullyConnectedLayer(512)
reluLayer
fullyConnectedLayer(256)
reluLayer
fullyConnectedLayer(128)
reluLayer
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
And the options in the neural network is
miniBatchSize = 10;
valFrequency = 5;
options = trainingOptions(‘sgdm’, …
‘MiniBatchSize’,miniBatchSize, …
‘MaxEpochs’,5, …
‘InitialLearnRate’,3e-4, …
‘Shuffle’,’every-epoch’, …
‘ValidationData’,augimdsValidation, …
‘ValidationFrequency’,valFrequency, …
‘Verbose’,true, …
‘Plots’,’training-progress’, …
‘ExecutionEnvironment’, ‘parallel’);
I expected when i use a GPU, it’s training speed will be high
But when I train this network using Macbook(sigle CPU)
it takes 1 hour for around 2500 iterations
And when I use my desktop using RTX 2080Ti,
It takes much longer time to train.
MATLAB detects my GPU properly(I checked the GPU information using gpuDevice)
I don’t know how can I accelerate the training proess.
Thank you in advance I’ve made a simple neural network
It classifies MNIST handwritten digit using fully-connected layers
lgraph_2 = [ …
imageInputLayer([28 28 1])
fullyConnectedLayer(512)
reluLayer
fullyConnectedLayer(256)
reluLayer
fullyConnectedLayer(128)
reluLayer
fullyConnectedLayer(10)
softmaxLayer
classificationLayer];
And the options in the neural network is
miniBatchSize = 10;
valFrequency = 5;
options = trainingOptions(‘sgdm’, …
‘MiniBatchSize’,miniBatchSize, …
‘MaxEpochs’,5, …
‘InitialLearnRate’,3e-4, …
‘Shuffle’,’every-epoch’, …
‘ValidationData’,augimdsValidation, …
‘ValidationFrequency’,valFrequency, …
‘Verbose’,true, …
‘Plots’,’training-progress’, …
‘ExecutionEnvironment’, ‘parallel’);
I expected when i use a GPU, it’s training speed will be high
But when I train this network using Macbook(sigle CPU)
it takes 1 hour for around 2500 iterations
And when I use my desktop using RTX 2080Ti,
It takes much longer time to train.
MATLAB detects my GPU properly(I checked the GPU information using gpuDevice)
I don’t know how can I accelerate the training proess.
Thank you in advance deep learning MATLAB Answers — New Questions
how to change the font size in simulink?
how to change the font size of task pane while i am doing the onramp course for simulink?
The font size of Task Pane (where we are assigned various tasks to do) is very small. How to change it .
Zooming options?how to change the font size of task pane while i am doing the onramp course for simulink?
The font size of Task Pane (where we are assigned various tasks to do) is very small. How to change it .
Zooming options? how to change the font size of task pane while i am doing the onramp course for simulink?
The font size of Task Pane (where we are assigned various tasks to do) is very small. How to change it .
Zooming options? font size in simulink task pane MATLAB Answers — New Questions
Can the MATLAB Engine API implement interactive operations in the MATLAB Command Window?
In the MATLAB interface window, when running some programs or scripts, some interactive instructions are required, such as giving a prompt in the command window and asking the user to enter some numbers ,Y or N, and pressing the enter key, then the program will continue to execute based on the input content. Can the above operation be achieved using Python through the Matlab Engine API interface without opening the Matlab interface now?The following is a function that requires interactive operations in the command window of Matlab:
function my_function()
disp(‘Step 1: Please enter a number:’);
x = input(”);
disp([‘You entered: ‘, num2str(x)]);
disp(‘Step 2: Please enter another number:’);
y = input(”);
disp([‘You entered: ‘, num2str(y)]);
end
How to use Python to call the above function through the Matlab Engine API and achieve its normal operation? The prompt words and input content are completed through programming or input in Python.In the MATLAB interface window, when running some programs or scripts, some interactive instructions are required, such as giving a prompt in the command window and asking the user to enter some numbers ,Y or N, and pressing the enter key, then the program will continue to execute based on the input content. Can the above operation be achieved using Python through the Matlab Engine API interface without opening the Matlab interface now?The following is a function that requires interactive operations in the command window of Matlab:
function my_function()
disp(‘Step 1: Please enter a number:’);
x = input(”);
disp([‘You entered: ‘, num2str(x)]);
disp(‘Step 2: Please enter another number:’);
y = input(”);
disp([‘You entered: ‘, num2str(y)]);
end
How to use Python to call the above function through the Matlab Engine API and achieve its normal operation? The prompt words and input content are completed through programming or input in Python. In the MATLAB interface window, when running some programs or scripts, some interactive instructions are required, such as giving a prompt in the command window and asking the user to enter some numbers ,Y or N, and pressing the enter key, then the program will continue to execute based on the input content. Can the above operation be achieved using Python through the Matlab Engine API interface without opening the Matlab interface now?The following is a function that requires interactive operations in the command window of Matlab:
function my_function()
disp(‘Step 1: Please enter a number:’);
x = input(”);
disp([‘You entered: ‘, num2str(x)]);
disp(‘Step 2: Please enter another number:’);
y = input(”);
disp([‘You entered: ‘, num2str(y)]);
end
How to use Python to call the above function through the Matlab Engine API and achieve its normal operation? The prompt words and input content are completed through programming or input in Python. matlab engine api for python, interactive operations, command window MATLAB Answers — New Questions
Taylor Series Derivative Approximations
This is what I am trying to achieve:
Write a MATLAB algorithm that evaluates
y′(t) = f(y,t)
y(a) = yo
using a first order Taylor series to approximate the derivative. Test your code by setting
f(y,t) = y − t^2 + 1, with y(0) = 0.5,
and comparing your results to the analytical solution. For your records, in 150 words or less as
comments in the code, report the key steps in the code and the step size
used to achieve a reasonably accurate answer.
This is what I have:
syms x y t;
a=input(‘central point: ‘);
f=input(‘f(x)=’);
v1=input(‘variable 1: ‘);
v2=input(‘variable 2: ‘);
taylor(f,[v1,v2],a,’Order’,2)
So I’ve written an algorithm that gives the first order taylor series of an input function. I don’t know how to use this to approximate the derivative. Any direction would be helpful.This is what I am trying to achieve:
Write a MATLAB algorithm that evaluates
y′(t) = f(y,t)
y(a) = yo
using a first order Taylor series to approximate the derivative. Test your code by setting
f(y,t) = y − t^2 + 1, with y(0) = 0.5,
and comparing your results to the analytical solution. For your records, in 150 words or less as
comments in the code, report the key steps in the code and the step size
used to achieve a reasonably accurate answer.
This is what I have:
syms x y t;
a=input(‘central point: ‘);
f=input(‘f(x)=’);
v1=input(‘variable 1: ‘);
v2=input(‘variable 2: ‘);
taylor(f,[v1,v2],a,’Order’,2)
So I’ve written an algorithm that gives the first order taylor series of an input function. I don’t know how to use this to approximate the derivative. Any direction would be helpful. This is what I am trying to achieve:
Write a MATLAB algorithm that evaluates
y′(t) = f(y,t)
y(a) = yo
using a first order Taylor series to approximate the derivative. Test your code by setting
f(y,t) = y − t^2 + 1, with y(0) = 0.5,
and comparing your results to the analytical solution. For your records, in 150 words or less as
comments in the code, report the key steps in the code and the step size
used to achieve a reasonably accurate answer.
This is what I have:
syms x y t;
a=input(‘central point: ‘);
f=input(‘f(x)=’);
v1=input(‘variable 1: ‘);
v2=input(‘variable 2: ‘);
taylor(f,[v1,v2],a,’Order’,2)
So I’ve written an algorithm that gives the first order taylor series of an input function. I don’t know how to use this to approximate the derivative. Any direction would be helpful. tayorseries, differentialequation, homework MATLAB Answers — New Questions
I have an error in this code and the error is () Is there anyone who can help me I would be grateful for that
% إضافة مسار مكتبة WFDB Toolbox إلى Matlab
addpath("C:wfdbwfdb-app-toolbox-0-10-0mcode"); % استبدل هذا المسار بموقع مكتبة WFDB على جهازك
% قائمة بالتسجيلات من قاعدة البيانات
records = {‘100’, ‘101’, ‘102’, ‘103’, ‘104’, ‘105’, ‘106’, ‘107’, ‘108’, ‘109’, …
‘111’, ‘112’, ‘113’, ‘114’, ‘115’, ‘116’, ‘117’, ‘118’, ‘119’, ‘121’, …
‘122’, ‘123’, ‘124’, ‘200’, ‘201’, ‘202’, ‘203’, ‘205’, ‘207’, ‘208’, …
‘209’, ‘210’, ‘212’, ‘213’, ‘214’, ‘215’, ‘217’, ‘219’, ‘220’, ‘221’, …
‘222’, ‘223’, ‘228’, ‘230’, ‘231’, ‘232’, ‘233’, ‘234’};
% تحديد نسبة البيانات للتدريب
train_ratio = 0.7;
% ترتيب السجلات عشوائيًا لضمان توزيع عشوائي
shuffled_indices = randperm(length(records));
records = records(shuffled_indices);
% حساب عدد السجلات للتدريب والاختبار
num_train = round(train_ratio * length(records));
num_test = length(records) – num_train;
% تقسيم السجلات إلى مجموعتي التدريب والاختبار
train_records = records(1:num_train);
test_records = records(num_train+1:end);
% دالة لقراءة ومعالجة بيانات ECG
function data = read_and_process_ecg(recordName)
[ECG, Fs] = rdsamp(recordName, 1); % قراءة البيانات
ECG = ECG – mean(ECG); % إزالة ضوضاء التيار المستمر
[b, a] = butter(4, [0.5 45] / (Fs / 2), ‘bandpass’); % مرشح رقمي
filtered_ECG = filtfilt(b, a, ECG); % تطبيق المرشح بتمرير صفري
normalized_ECG = 2 * (filtered_ECG – min(filtered_ECG)) / (max(filtered_ECG) – min(filtered_ECG)) – 1; % تطبيع
qrs_peaks = panTompkinsQRS(normalized_ECG, Fs); % اكتشاف قمم QRS
data.segments = segmentHeartBeats(normalized_ECG, qrs_peaks, Fs); % تجزئة نبضات القلب
data.Fs = Fs;
end
% معالجة بيانات التدريب
train_data = cell(length(train_records), 1);
for i = 1:length(train_records)
recordName = train_records{i};
fprintf(‘Processing training record %s…n’, recordName);
train_data{i} = read_and_process_ecg(recordName);
end
% معالجة بيانات الاختبار
test_data = cell(length(test_records), 1);
for i = 1:length(test_records)
recordName = test_records{i};
fprintf(‘Processing test record %s…n’, recordName);
test_data{i} = read_and_process_ecg(recordName);
end
% توحيد البيانات في مصفوفة 3D (عينات، ميزات، قنوات)
function [X, Y] = prepare_data(data, fixed_segment_length)
% حساب عدد العينات
num_samples = sum(cellfun(@(d) length(d.segments), data));
% تهيئة مصفوفة البيانات
X = zeros(num_samples, fixed_segment_length, 1); % إضافة بُعد القنوات
Y = zeros(num_samples, 1);
sample_idx = 1;
for i = 1:length(data)
for j = 1:length(data{i}.segments)
segment = data{i}.segments{j};
segment_length = length(segment);
% إذا كان المقطع أطول من الطول الثابت، نقوم بتقليمه
if segment_length > fixed_segment_length
segment = segment(1:fixed_segment_length);
% إذا كان المقطع أقصر، نقوم بتعبئته بالأصفار
elseif segment_length < fixed_segment_length
segment = [segment; zeros(fixed_segment_length – segment_length, 1)];
end
% تعيين المقطع إلى مصفوفة X
X(sample_idx, :, 1) = segment’; % تعيين مع إضافة بُعد القناة
% تعيين التسمية
Y(sample_idx) = i; % استخدام رقم السجل كتصنيف مبدئي
sample_idx = sample_idx + 1;
end
end
% تحويل X إلى الشكل المطلوب (طول السلسلة، عدد العينات، عدد القنوات)
% X = permute(X, [2, 3, 1]); % ليس هناك حاجة لإعادة الترتيب هنا
end
% تعيين الطول الثابت للمقاطع
fixed_segment_length = 625; % يمكنك ضبط هذا الطول بناءً على تحليل البيانات
% تجهيز بيانات التدريب والاختبار
[xTrain, yTrain] = prepare_data(train_data, fixed_segment_length);
[xTest, yTest] = prepare_data(test_data, fixed_segment_length);
disp([‘Size of xTrain: ‘, num2str(size(xTrain))]);
disp([‘Size of xTest: ‘, num2str(size(xTest))]);
% تحويل التسميات إلى مصفوفات دلالية (Categorical)
numClasses = numel(unique(yTrain));
yTrain = categorical(yTrain);
yTest = categorical(yTest);
% % تحويل التسميات إلى مصفوفات دلالية (Categorical)
% yTrain = cellfun(@(x) categorical(x, 1:length(train_records)), num2cell(yTrain), ‘UniformOutput’, false);
% yTest = cellfun(@(x) categorical(x, 1:length(test_records)), num2cell(yTest), ‘UniformOutput’, false);
% حصول على القيم الممكنة للتصنيفات
labels = unique(yTrain);
% تحويل `yTrain` و `yTest` إلى مصفوفة خلية من المتجهات النمطية
yTrain = cellfun(@(x) categorical(x, labels), num2cell(yTrain), ‘UniformOutput’, false);
yTest = cellfun(@(x) categorical(x, labels), num2cell(yTest), ‘UniformOutput’, false);
% تحويل الأبعاد إلى الصيغة الصحيحة إذا لزم الأمر
xTrain = permute(xTrain, [2, 3, 1]);
xTest = permute(xTest, [2, 3, 1]);
% 2. بناء نموذج 1D-CNN
layers = [
sequenceInputLayer([fixed_segment_length 1]) % طبقة الإدخال مع حجم البيانات وعدد القنوات
convolution1dLayer(3, 32, ‘Padding’, ‘same’) % طبقة الالتفاف
batchNormalizationLayer % طبقة تطبيع الدفعات
reluLayer % طبقة التنشيط ReLU
maxPooling1dLayer(2, ‘Stride’, 2) % طبقة التجميع
dropoutLayer(0.5) % طبقة الإسقاط لتقليل الإفراط في التكيف
convolution1dLayer(3, 64, ‘Padding’, ‘same’)
batchNormalizationLayer
reluLayer
maxPooling1dLayer(2, ‘Stride’, 2)
dropoutLayer(0.5)
flattenLayer % تحويل البيانات إلى مصفوفة مسطحة
fullyConnectedLayer(128) % طبقة الاتصال الكاملة
reluLayer
dropoutLayer(0.5)
fullyConnectedLayer(numClasses) % طبقة الخرج بعدد الفئات
softmaxLayer % طبقة سوفت ماكس
classificationLayer]; % طبقة التصنيف
% 3. تجميع النموذج
options = trainingOptions(‘adam’, …
‘InitialLearnRate’, 0.001, …
‘MaxEpochs’, 20, …
‘MiniBatchSize’, 32, …
‘ValidationData’, {xTest, yTest}, …
‘Plots’, ‘training-progress’, …
‘Verbose’, false);
% 4. تدريب النموذج
net = trainNetwork(xTrain, yTrain, layers, options);
% 5. تقييم النموذج
yPred = classify(net, xTest);
accuracy = sum(yPred == yTest) / numel(yTest);
disp([‘Test Accuracy: ‘, num2str(accuracy * 100), ‘%’]);
% طباعة تقرير التصنيف
confusionchart(yTest, yPred);
% الدالة: تطبيق خوارزمية Pan-Tompkins لاكتشاف قمم QRS
function qrs_peaks = panTompkinsQRS(ecg, fs)
% تطبيق خوارزمية Pan-Tompkins لاكتشاف قمم QRS في إشارات ECG
% سيتم تنفيذ عدة خطوات: الاشتقاق، التربيع، التنعيم، وإيجاد القمم
% المشتقة
diff_ecg = diff(ecg);
% التربيع
squared_ecg = diff_ecg .^ 2;
% التنعيم باستخدام نافذة متحركة
window_size = round(0.12 * fs); % 120ms نافذة
smoothed_ecg = conv(squared_ecg, ones(1, window_size) / window_size, ‘same’);
% إيجاد القمم
max_value = max(smoothed_ecg); % الحصول على القيمة العظمى للإشارة المربعة المنعمة
min_peak_height = 0.02 * max_value; % تعيين MinPeakHeight كنسبة مئوية من القيمة العظمى
[~, qrs_peaks] = findpeaks(smoothed_ecg, ‘MinPeakHeight’, min_peak_height, ‘MinPeakDistance’, round(0.6 * fs));
end
% الدالة: تجزئة إشارات نبضات القلب الفردية بناءً على مواقع قمم QRS
function segments = segmentHeartBeats(ecg, qrs_peaks, fs)
% تجزئة إشارات نبضات القلب الفردية بناءً على مواقع قمم QRS
% سنقوم بتحديد أجزاء الإشارة حول كل قمة QRS
num_beats = length(qrs_peaks);
segments = cell(num_beats, 1);
% طول كل مقطع حول QRS (مثلاً 0.6 ثانية)
segment_length = round(0.6 * fs);
for i = 1:num_beats
start_idx = max(qrs_peaks(i) – segment_length, 1);
end_idx = min(qrs_peaks(i) + segment_length, length(ecg));
segments{i} = ecg(start_idx:end_idx);
end
end% إضافة مسار مكتبة WFDB Toolbox إلى Matlab
addpath("C:wfdbwfdb-app-toolbox-0-10-0mcode"); % استبدل هذا المسار بموقع مكتبة WFDB على جهازك
% قائمة بالتسجيلات من قاعدة البيانات
records = {‘100’, ‘101’, ‘102’, ‘103’, ‘104’, ‘105’, ‘106’, ‘107’, ‘108’, ‘109’, …
‘111’, ‘112’, ‘113’, ‘114’, ‘115’, ‘116’, ‘117’, ‘118’, ‘119’, ‘121’, …
‘122’, ‘123’, ‘124’, ‘200’, ‘201’, ‘202’, ‘203’, ‘205’, ‘207’, ‘208’, …
‘209’, ‘210’, ‘212’, ‘213’, ‘214’, ‘215’, ‘217’, ‘219’, ‘220’, ‘221’, …
‘222’, ‘223’, ‘228’, ‘230’, ‘231’, ‘232’, ‘233’, ‘234’};
% تحديد نسبة البيانات للتدريب
train_ratio = 0.7;
% ترتيب السجلات عشوائيًا لضمان توزيع عشوائي
shuffled_indices = randperm(length(records));
records = records(shuffled_indices);
% حساب عدد السجلات للتدريب والاختبار
num_train = round(train_ratio * length(records));
num_test = length(records) – num_train;
% تقسيم السجلات إلى مجموعتي التدريب والاختبار
train_records = records(1:num_train);
test_records = records(num_train+1:end);
% دالة لقراءة ومعالجة بيانات ECG
function data = read_and_process_ecg(recordName)
[ECG, Fs] = rdsamp(recordName, 1); % قراءة البيانات
ECG = ECG – mean(ECG); % إزالة ضوضاء التيار المستمر
[b, a] = butter(4, [0.5 45] / (Fs / 2), ‘bandpass’); % مرشح رقمي
filtered_ECG = filtfilt(b, a, ECG); % تطبيق المرشح بتمرير صفري
normalized_ECG = 2 * (filtered_ECG – min(filtered_ECG)) / (max(filtered_ECG) – min(filtered_ECG)) – 1; % تطبيع
qrs_peaks = panTompkinsQRS(normalized_ECG, Fs); % اكتشاف قمم QRS
data.segments = segmentHeartBeats(normalized_ECG, qrs_peaks, Fs); % تجزئة نبضات القلب
data.Fs = Fs;
end
% معالجة بيانات التدريب
train_data = cell(length(train_records), 1);
for i = 1:length(train_records)
recordName = train_records{i};
fprintf(‘Processing training record %s…n’, recordName);
train_data{i} = read_and_process_ecg(recordName);
end
% معالجة بيانات الاختبار
test_data = cell(length(test_records), 1);
for i = 1:length(test_records)
recordName = test_records{i};
fprintf(‘Processing test record %s…n’, recordName);
test_data{i} = read_and_process_ecg(recordName);
end
% توحيد البيانات في مصفوفة 3D (عينات، ميزات، قنوات)
function [X, Y] = prepare_data(data, fixed_segment_length)
% حساب عدد العينات
num_samples = sum(cellfun(@(d) length(d.segments), data));
% تهيئة مصفوفة البيانات
X = zeros(num_samples, fixed_segment_length, 1); % إضافة بُعد القنوات
Y = zeros(num_samples, 1);
sample_idx = 1;
for i = 1:length(data)
for j = 1:length(data{i}.segments)
segment = data{i}.segments{j};
segment_length = length(segment);
% إذا كان المقطع أطول من الطول الثابت، نقوم بتقليمه
if segment_length > fixed_segment_length
segment = segment(1:fixed_segment_length);
% إذا كان المقطع أقصر، نقوم بتعبئته بالأصفار
elseif segment_length < fixed_segment_length
segment = [segment; zeros(fixed_segment_length – segment_length, 1)];
end
% تعيين المقطع إلى مصفوفة X
X(sample_idx, :, 1) = segment’; % تعيين مع إضافة بُعد القناة
% تعيين التسمية
Y(sample_idx) = i; % استخدام رقم السجل كتصنيف مبدئي
sample_idx = sample_idx + 1;
end
end
% تحويل X إلى الشكل المطلوب (طول السلسلة، عدد العينات، عدد القنوات)
% X = permute(X, [2, 3, 1]); % ليس هناك حاجة لإعادة الترتيب هنا
end
% تعيين الطول الثابت للمقاطع
fixed_segment_length = 625; % يمكنك ضبط هذا الطول بناءً على تحليل البيانات
% تجهيز بيانات التدريب والاختبار
[xTrain, yTrain] = prepare_data(train_data, fixed_segment_length);
[xTest, yTest] = prepare_data(test_data, fixed_segment_length);
disp([‘Size of xTrain: ‘, num2str(size(xTrain))]);
disp([‘Size of xTest: ‘, num2str(size(xTest))]);
% تحويل التسميات إلى مصفوفات دلالية (Categorical)
numClasses = numel(unique(yTrain));
yTrain = categorical(yTrain);
yTest = categorical(yTest);
% % تحويل التسميات إلى مصفوفات دلالية (Categorical)
% yTrain = cellfun(@(x) categorical(x, 1:length(train_records)), num2cell(yTrain), ‘UniformOutput’, false);
% yTest = cellfun(@(x) categorical(x, 1:length(test_records)), num2cell(yTest), ‘UniformOutput’, false);
% حصول على القيم الممكنة للتصنيفات
labels = unique(yTrain);
% تحويل `yTrain` و `yTest` إلى مصفوفة خلية من المتجهات النمطية
yTrain = cellfun(@(x) categorical(x, labels), num2cell(yTrain), ‘UniformOutput’, false);
yTest = cellfun(@(x) categorical(x, labels), num2cell(yTest), ‘UniformOutput’, false);
% تحويل الأبعاد إلى الصيغة الصحيحة إذا لزم الأمر
xTrain = permute(xTrain, [2, 3, 1]);
xTest = permute(xTest, [2, 3, 1]);
% 2. بناء نموذج 1D-CNN
layers = [
sequenceInputLayer([fixed_segment_length 1]) % طبقة الإدخال مع حجم البيانات وعدد القنوات
convolution1dLayer(3, 32, ‘Padding’, ‘same’) % طبقة الالتفاف
batchNormalizationLayer % طبقة تطبيع الدفعات
reluLayer % طبقة التنشيط ReLU
maxPooling1dLayer(2, ‘Stride’, 2) % طبقة التجميع
dropoutLayer(0.5) % طبقة الإسقاط لتقليل الإفراط في التكيف
convolution1dLayer(3, 64, ‘Padding’, ‘same’)
batchNormalizationLayer
reluLayer
maxPooling1dLayer(2, ‘Stride’, 2)
dropoutLayer(0.5)
flattenLayer % تحويل البيانات إلى مصفوفة مسطحة
fullyConnectedLayer(128) % طبقة الاتصال الكاملة
reluLayer
dropoutLayer(0.5)
fullyConnectedLayer(numClasses) % طبقة الخرج بعدد الفئات
softmaxLayer % طبقة سوفت ماكس
classificationLayer]; % طبقة التصنيف
% 3. تجميع النموذج
options = trainingOptions(‘adam’, …
‘InitialLearnRate’, 0.001, …
‘MaxEpochs’, 20, …
‘MiniBatchSize’, 32, …
‘ValidationData’, {xTest, yTest}, …
‘Plots’, ‘training-progress’, …
‘Verbose’, false);
% 4. تدريب النموذج
net = trainNetwork(xTrain, yTrain, layers, options);
% 5. تقييم النموذج
yPred = classify(net, xTest);
accuracy = sum(yPred == yTest) / numel(yTest);
disp([‘Test Accuracy: ‘, num2str(accuracy * 100), ‘%’]);
% طباعة تقرير التصنيف
confusionchart(yTest, yPred);
% الدالة: تطبيق خوارزمية Pan-Tompkins لاكتشاف قمم QRS
function qrs_peaks = panTompkinsQRS(ecg, fs)
% تطبيق خوارزمية Pan-Tompkins لاكتشاف قمم QRS في إشارات ECG
% سيتم تنفيذ عدة خطوات: الاشتقاق، التربيع، التنعيم، وإيجاد القمم
% المشتقة
diff_ecg = diff(ecg);
% التربيع
squared_ecg = diff_ecg .^ 2;
% التنعيم باستخدام نافذة متحركة
window_size = round(0.12 * fs); % 120ms نافذة
smoothed_ecg = conv(squared_ecg, ones(1, window_size) / window_size, ‘same’);
% إيجاد القمم
max_value = max(smoothed_ecg); % الحصول على القيمة العظمى للإشارة المربعة المنعمة
min_peak_height = 0.02 * max_value; % تعيين MinPeakHeight كنسبة مئوية من القيمة العظمى
[~, qrs_peaks] = findpeaks(smoothed_ecg, ‘MinPeakHeight’, min_peak_height, ‘MinPeakDistance’, round(0.6 * fs));
end
% الدالة: تجزئة إشارات نبضات القلب الفردية بناءً على مواقع قمم QRS
function segments = segmentHeartBeats(ecg, qrs_peaks, fs)
% تجزئة إشارات نبضات القلب الفردية بناءً على مواقع قمم QRS
% سنقوم بتحديد أجزاء الإشارة حول كل قمة QRS
num_beats = length(qrs_peaks);
segments = cell(num_beats, 1);
% طول كل مقطع حول QRS (مثلاً 0.6 ثانية)
segment_length = round(0.6 * fs);
for i = 1:num_beats
start_idx = max(qrs_peaks(i) – segment_length, 1);
end_idx = min(qrs_peaks(i) + segment_length, length(ecg));
segments{i} = ecg(start_idx:end_idx);
end
end % إضافة مسار مكتبة WFDB Toolbox إلى Matlab
addpath("C:wfdbwfdb-app-toolbox-0-10-0mcode"); % استبدل هذا المسار بموقع مكتبة WFDB على جهازك
% قائمة بالتسجيلات من قاعدة البيانات
records = {‘100’, ‘101’, ‘102’, ‘103’, ‘104’, ‘105’, ‘106’, ‘107’, ‘108’, ‘109’, …
‘111’, ‘112’, ‘113’, ‘114’, ‘115’, ‘116’, ‘117’, ‘118’, ‘119’, ‘121’, …
‘122’, ‘123’, ‘124’, ‘200’, ‘201’, ‘202’, ‘203’, ‘205’, ‘207’, ‘208’, …
‘209’, ‘210’, ‘212’, ‘213’, ‘214’, ‘215’, ‘217’, ‘219’, ‘220’, ‘221’, …
‘222’, ‘223’, ‘228’, ‘230’, ‘231’, ‘232’, ‘233’, ‘234’};
% تحديد نسبة البيانات للتدريب
train_ratio = 0.7;
% ترتيب السجلات عشوائيًا لضمان توزيع عشوائي
shuffled_indices = randperm(length(records));
records = records(shuffled_indices);
% حساب عدد السجلات للتدريب والاختبار
num_train = round(train_ratio * length(records));
num_test = length(records) – num_train;
% تقسيم السجلات إلى مجموعتي التدريب والاختبار
train_records = records(1:num_train);
test_records = records(num_train+1:end);
% دالة لقراءة ومعالجة بيانات ECG
function data = read_and_process_ecg(recordName)
[ECG, Fs] = rdsamp(recordName, 1); % قراءة البيانات
ECG = ECG – mean(ECG); % إزالة ضوضاء التيار المستمر
[b, a] = butter(4, [0.5 45] / (Fs / 2), ‘bandpass’); % مرشح رقمي
filtered_ECG = filtfilt(b, a, ECG); % تطبيق المرشح بتمرير صفري
normalized_ECG = 2 * (filtered_ECG – min(filtered_ECG)) / (max(filtered_ECG) – min(filtered_ECG)) – 1; % تطبيع
qrs_peaks = panTompkinsQRS(normalized_ECG, Fs); % اكتشاف قمم QRS
data.segments = segmentHeartBeats(normalized_ECG, qrs_peaks, Fs); % تجزئة نبضات القلب
data.Fs = Fs;
end
% معالجة بيانات التدريب
train_data = cell(length(train_records), 1);
for i = 1:length(train_records)
recordName = train_records{i};
fprintf(‘Processing training record %s…n’, recordName);
train_data{i} = read_and_process_ecg(recordName);
end
% معالجة بيانات الاختبار
test_data = cell(length(test_records), 1);
for i = 1:length(test_records)
recordName = test_records{i};
fprintf(‘Processing test record %s…n’, recordName);
test_data{i} = read_and_process_ecg(recordName);
end
% توحيد البيانات في مصفوفة 3D (عينات، ميزات، قنوات)
function [X, Y] = prepare_data(data, fixed_segment_length)
% حساب عدد العينات
num_samples = sum(cellfun(@(d) length(d.segments), data));
% تهيئة مصفوفة البيانات
X = zeros(num_samples, fixed_segment_length, 1); % إضافة بُعد القنوات
Y = zeros(num_samples, 1);
sample_idx = 1;
for i = 1:length(data)
for j = 1:length(data{i}.segments)
segment = data{i}.segments{j};
segment_length = length(segment);
% إذا كان المقطع أطول من الطول الثابت، نقوم بتقليمه
if segment_length > fixed_segment_length
segment = segment(1:fixed_segment_length);
% إذا كان المقطع أقصر، نقوم بتعبئته بالأصفار
elseif segment_length < fixed_segment_length
segment = [segment; zeros(fixed_segment_length – segment_length, 1)];
end
% تعيين المقطع إلى مصفوفة X
X(sample_idx, :, 1) = segment’; % تعيين مع إضافة بُعد القناة
% تعيين التسمية
Y(sample_idx) = i; % استخدام رقم السجل كتصنيف مبدئي
sample_idx = sample_idx + 1;
end
end
% تحويل X إلى الشكل المطلوب (طول السلسلة، عدد العينات، عدد القنوات)
% X = permute(X, [2, 3, 1]); % ليس هناك حاجة لإعادة الترتيب هنا
end
% تعيين الطول الثابت للمقاطع
fixed_segment_length = 625; % يمكنك ضبط هذا الطول بناءً على تحليل البيانات
% تجهيز بيانات التدريب والاختبار
[xTrain, yTrain] = prepare_data(train_data, fixed_segment_length);
[xTest, yTest] = prepare_data(test_data, fixed_segment_length);
disp([‘Size of xTrain: ‘, num2str(size(xTrain))]);
disp([‘Size of xTest: ‘, num2str(size(xTest))]);
% تحويل التسميات إلى مصفوفات دلالية (Categorical)
numClasses = numel(unique(yTrain));
yTrain = categorical(yTrain);
yTest = categorical(yTest);
% % تحويل التسميات إلى مصفوفات دلالية (Categorical)
% yTrain = cellfun(@(x) categorical(x, 1:length(train_records)), num2cell(yTrain), ‘UniformOutput’, false);
% yTest = cellfun(@(x) categorical(x, 1:length(test_records)), num2cell(yTest), ‘UniformOutput’, false);
% حصول على القيم الممكنة للتصنيفات
labels = unique(yTrain);
% تحويل `yTrain` و `yTest` إلى مصفوفة خلية من المتجهات النمطية
yTrain = cellfun(@(x) categorical(x, labels), num2cell(yTrain), ‘UniformOutput’, false);
yTest = cellfun(@(x) categorical(x, labels), num2cell(yTest), ‘UniformOutput’, false);
% تحويل الأبعاد إلى الصيغة الصحيحة إذا لزم الأمر
xTrain = permute(xTrain, [2, 3, 1]);
xTest = permute(xTest, [2, 3, 1]);
% 2. بناء نموذج 1D-CNN
layers = [
sequenceInputLayer([fixed_segment_length 1]) % طبقة الإدخال مع حجم البيانات وعدد القنوات
convolution1dLayer(3, 32, ‘Padding’, ‘same’) % طبقة الالتفاف
batchNormalizationLayer % طبقة تطبيع الدفعات
reluLayer % طبقة التنشيط ReLU
maxPooling1dLayer(2, ‘Stride’, 2) % طبقة التجميع
dropoutLayer(0.5) % طبقة الإسقاط لتقليل الإفراط في التكيف
convolution1dLayer(3, 64, ‘Padding’, ‘same’)
batchNormalizationLayer
reluLayer
maxPooling1dLayer(2, ‘Stride’, 2)
dropoutLayer(0.5)
flattenLayer % تحويل البيانات إلى مصفوفة مسطحة
fullyConnectedLayer(128) % طبقة الاتصال الكاملة
reluLayer
dropoutLayer(0.5)
fullyConnectedLayer(numClasses) % طبقة الخرج بعدد الفئات
softmaxLayer % طبقة سوفت ماكس
classificationLayer]; % طبقة التصنيف
% 3. تجميع النموذج
options = trainingOptions(‘adam’, …
‘InitialLearnRate’, 0.001, …
‘MaxEpochs’, 20, …
‘MiniBatchSize’, 32, …
‘ValidationData’, {xTest, yTest}, …
‘Plots’, ‘training-progress’, …
‘Verbose’, false);
% 4. تدريب النموذج
net = trainNetwork(xTrain, yTrain, layers, options);
% 5. تقييم النموذج
yPred = classify(net, xTest);
accuracy = sum(yPred == yTest) / numel(yTest);
disp([‘Test Accuracy: ‘, num2str(accuracy * 100), ‘%’]);
% طباعة تقرير التصنيف
confusionchart(yTest, yPred);
% الدالة: تطبيق خوارزمية Pan-Tompkins لاكتشاف قمم QRS
function qrs_peaks = panTompkinsQRS(ecg, fs)
% تطبيق خوارزمية Pan-Tompkins لاكتشاف قمم QRS في إشارات ECG
% سيتم تنفيذ عدة خطوات: الاشتقاق، التربيع، التنعيم، وإيجاد القمم
% المشتقة
diff_ecg = diff(ecg);
% التربيع
squared_ecg = diff_ecg .^ 2;
% التنعيم باستخدام نافذة متحركة
window_size = round(0.12 * fs); % 120ms نافذة
smoothed_ecg = conv(squared_ecg, ones(1, window_size) / window_size, ‘same’);
% إيجاد القمم
max_value = max(smoothed_ecg); % الحصول على القيمة العظمى للإشارة المربعة المنعمة
min_peak_height = 0.02 * max_value; % تعيين MinPeakHeight كنسبة مئوية من القيمة العظمى
[~, qrs_peaks] = findpeaks(smoothed_ecg, ‘MinPeakHeight’, min_peak_height, ‘MinPeakDistance’, round(0.6 * fs));
end
% الدالة: تجزئة إشارات نبضات القلب الفردية بناءً على مواقع قمم QRS
function segments = segmentHeartBeats(ecg, qrs_peaks, fs)
% تجزئة إشارات نبضات القلب الفردية بناءً على مواقع قمم QRS
% سنقوم بتحديد أجزاء الإشارة حول كل قمة QRS
num_beats = length(qrs_peaks);
segments = cell(num_beats, 1);
% طول كل مقطع حول QRS (مثلاً 0.6 ثانية)
segment_length = round(0.6 * fs);
for i = 1:num_beats
start_idx = max(qrs_peaks(i) – segment_length, 1);
end_idx = min(qrs_peaks(i) + segment_length, length(ecg));
segments{i} = ecg(start_idx:end_idx);
end
end ecg, 1d-cnn, proprocessing MATLAB Answers — New Questions