Tag Archives: matlab
How do I determine if a function is user-defined or belongs to a MATLAB toolbox?
How do I determine if a function is user-defined or belongs to a MATLAB toolbox?How do I determine if a function is user-defined or belongs to a MATLAB toolbox? How do I determine if a function is user-defined or belongs to a MATLAB toolbox? locate, function, name, source MATLAB Answers — New Questions
Why does my Simulink Coder build, Rapid Accelerator build or FMU Export fail with “fatal error C1083: Cannot open include file: ‘xxx.h’: No such file or directory” when using Visual Studio C++ compiler, referencing C Standard Library headers?
I encountered errors while running a Simulink Coder build, Rapid Accelerator build, or FMU Export using the Visual Studio C++ compiler on Windows. The errors were related to missing C Standard Library headers like "limits.h", "string.h", "stdlib.h", or "stddef.h":
fatal error C1083: Cannot open include file: ‘xxx.h’: No such file or directory
The same build works with the MinGW64 compiler. I verified that my Visual Studio setup is correct by successfully compiling a "Hello World" C program and creating a MEX file from MATLAB.I encountered errors while running a Simulink Coder build, Rapid Accelerator build, or FMU Export using the Visual Studio C++ compiler on Windows. The errors were related to missing C Standard Library headers like "limits.h", "string.h", "stdlib.h", or "stddef.h":
fatal error C1083: Cannot open include file: ‘xxx.h’: No such file or directory
The same build works with the MinGW64 compiler. I verified that my Visual Studio setup is correct by successfully compiling a "Hello World" C program and creating a MEX file from MATLAB. I encountered errors while running a Simulink Coder build, Rapid Accelerator build, or FMU Export using the Visual Studio C++ compiler on Windows. The errors were related to missing C Standard Library headers like "limits.h", "string.h", "stdlib.h", or "stddef.h":
fatal error C1083: Cannot open include file: ‘xxx.h’: No such file or directory
The same build works with the MinGW64 compiler. I verified that my Visual Studio setup is correct by successfully compiling a "Hello World" C program and creating a MEX file from MATLAB. raccel, rapid, accel, stdlib, cstdlib, cstd MATLAB Answers — New Questions
How to input a novel boundary condition for a coupled PDE system
Hi all,
I am trying to simulate a coupled PDE system with a non typical boundary conditions.
My coupled PDE system is as such.
The system is solved for two time periods
For first time period 0<tau_M1<tau
For s at the L.H.S we have
For s at the R.H.S we have
For species m at the L.H.S we have the to set m value to a constant
For species m at the R.H.S we have the no flux condition
For second time period tau<tau_M1<tau_2
For s at the L.H.S and R.H.S we have the same such as
For m we have
For the species we have the L.H.S boundary condition for timr period (tau<tau_M1<tau_2). It is this boundary condtiuon that I am seeking help with. How can I go about this.
function [c25, c2, vode] = pde1dm_PS_OCP_v1()
% Piecewise PDE Implementation
% Pulsing Simulation
% Constants Used in the Nernst Equation
n = 2; % No. of Electrons Involved
F = 96485.3329; % C/mol
R = 8.314; % J/(mol.K) or CV/(mol.K)
Temp = 273.15+20; % K
N = 21;
m = 0;
kappa=1;
eta=1;
gamma=1;
mu=1;
tau_M1=1;
tau_M2=2;
l=1;
D_r=1;
Area = 0.0011; % Geometric Area (cm^2)
m_layer = 4.13E-05; % m_layer (mol/cm^3)
D_m = 8.14E-08; % cm^2/s (De of polymer)
k = n*F*Area*l*m_layer;
% DIMENSIONLESS PARAMETERS
chi = linspace(0, 1, N);
tau = linspace(0, tau_M1, N); % Dimensionless Time
% FIRST POTENTIAL STEP
E0 = 0.22;
E_set = .450;
epsilon1 = ((n*F)/(R*Temp))*(E_set-E0); % Dimensionless Potential
c_M_ox = 1/(1+exp(-epsilon1)); % Mox BC
ic_arg_1 = {@(x)ones(size(N)) ; @(x)zeros(size(N))};
IC = @(x)PDE_ND_PS_EK_IC(x, ic_arg_1);
BC = @(xl, yl, xr, yr, t)PDE_PS_EK_BC(xl, yl, xr, yr, c_M_ox);
sol1 = pde1dm(m, @(x, t, c, DcDx)PDE_ND_PS_EK(chi, tau, c, DcDx, kappa, eta, gamma, mu, D_r), …
IC, BC, chi, tau);
c1 = sol1(:, :, 1); % Substrate Conc.
c2 = sol1(:, :, 2); % Mox Conc.
% OPEN CIRCUIT POTENTIAL
tau2 = linspace(tau_M1, tau_M2, N); % Dimensionless Time
ic_arg_1 = {@(x)interp1(chi, sol1(N, :, 1), x) ; @(x)interp1(chi, sol1(N, :, 2), x)};
IC2 = @(x)PDE_ND_PS_EK_IC(x, ic_arg_1);
BC2 = @(xl, yl, xr, yr, t, v)PDE_PSw_EK_BC_2(xl, yl, xr, yr, v);
ode_IC = @() ode_ICFun(tau_M1);
opts.vectorized=’on’;
% sol2 = pde1dm(m, @(x, t, c, DcDx)PDE_ND_PS_EK(x, t, c, DcDx, kappa, eta, gamma, mu, D_r), …
% IC2, BC2, chi, tau2);
[sol2, vode] = pde1dm(m, @(x, t, c, DcDx)PDE_ND_PS_EK(x, t, c, DcDx, kappa, eta, gamma, mu, D_r), …
IC2, BC2, chi, tau2, @odeFunc, ode_IC, .99);
% Concentration Profiles c(i, j, k)(Solutions)
c14 = [c1; sol2(:, :, 1)]; % Substrate Conc.
c25 = [c2; sol2(:, :, 2)]; % Mox Conc.
c36 = 1-c25; % Mred Conc.
mox = abs(sol2(:, 1, 2));
mred = 1-mox;
E_PS = E_set.*ones(1,N);
for counter2 = 1:N
E_OCP(counter2) = E0 + (((R*Temp)/(n*F).*(log(mox(counter2,:)./mred(counter2,:)))));
end
E_array = [E_PS, E_OCP];
% This is the case finder function
% Video(kappa, eta, gamma, mu, tau_M1, tau_M2, l, D_m, N, chi, c14, c25, c36, E_array)
function [cc, ff, ss] = PDE_ND_PS_EK(chi, tau, c, DcDx, kappa, eta, gamma, mu, D_r)
% S; Mox;
cc = [ D_r; 1];
ff = [ 1; 1].*DcDx;
S_kin = ((gamma/eta)*(kappa^2)*c(1)*c(2))./…
(gamma.*c(2).*(1+(mu.*c(1)))+c(1));
M_kin = ((kappa^2).*c(1).*c(2))./…
(gamma.*c(2).*(1+(mu.*c(1)))+c(1));
ss = [-S_kin; -M_kin];
end
function c0 = PDE_ND_PS_EK_IC(x, ic_arg_1)
% Substrate; Mox;
c0 = [ic_arg_1{1}(x).’; ic_arg_1{2}(x).’];
end
function [pl, ql, pr, qr] = PDE_PS_EK_BC(xl, yl, xr, yr, c_M_ox)
% ———————
% | | |
% | | |
% | | |
% | | |
% | | |
% | | |
% | | |
% ——-|————-
% pl pr
% Substrate; Mediator;
pl = [0 ; yl(2)-c_M_ox];
ql = [1 ; 0];
pr = [yr(1)-1 ; 0];
qr = [0 ; 1];
end
function [pl, ql, pr, qr] = PDE_PSw_EK_BC_2(xl, yl, xr, yr, t, v, vdot)
pl = [0 ; 0];
ql = [1 ; 1];
pr = [yr(1)-1 ; 0];
qr = [0 ; 1];
end
function f = odeFunc(x, t, c, DcDx, v, vdot)
f = ((1E-03./(v(1)*(1-v(1))))*(DcDx))-vdot(1);
end
function v0=ode_ICFun(tau_0)
v0 = ones(tau_0).*.9;
end
function myVideo = Video(kappa, eta, gamma, mu, tau_M1, tau_M2, l, D_m, N, chi, c14, c25, c36, E_array)
% Initialize Video
G = figure(1);
myVideo = VideoWriter(sprintf(‘κ%.2f γ%.2f η%.2f µ%.2f’, kappa, gamma, eta, mu));
myVideo.FrameRate = 10; % can adjust this, 5 – 10 works well for me
myVideo.Quality = 100;
open(myVideo);
color = ‘red’;
u = uicontrol(G, ‘Style’,’slider’,’Position’,[0 40 10 360],…
‘Min’,0,’Max’,N*2,’Value’,0);
tspan1 = linspace(0, round(((tau_M1*(l^2))/D_m)), N);
tspan2 = linspace(round(((tau_M1*(l^2))/D_m)), round(((tau_M2*l^2)/D_m),2), N);
tspan = [tspan1,tspan2];
for ii = 2:(N*2)
% Plot Species Conc. in the Layer
subplot(2,1,1);
yyaxis left
plot(chi,c25(ii,:),chi,c36(ii,:), ‘LineWidth’, 2);
ylabel(‘M’)
ylim([0,1]);
yyaxis right
plot(chi, c14(ii,:), ‘LineWidth’, 2);
ylabel(‘S’)
ylim([0,1]);
xlabel(‘chi’);
legend(‘M_{ox}’,’M_{red}’, ‘S’);
title(‘Normalized Concentration’);
subplot(2,1,2);
addpoints(animatedline(tspan,E_array,’marker’, ‘.’, ‘markersize’, 6, ‘color’, color,…
‘linestyle’, ‘–‘, ‘MaximumNumPoints’, 1),tspan(ii),E_array(ii));
ylim([0,0.5]);
xlim([0, tspan(end)]);
hold on;
title([‘Potential = ‘, num2str(E_array(ii))]);
% text(8, 8,{”,”})
drawnow
xlabel(‘t / s’); ylabel(‘E / V’);
u.Value = ii;
uicontrol(‘Style’,’Edit’,’Position’,[0,00,40,40], …
‘String’,num2str(tspan(ii),3));
pause(0.001)
M = getframe(G);
writeVideo(myVideo, M);
end
end
endHi all,
I am trying to simulate a coupled PDE system with a non typical boundary conditions.
My coupled PDE system is as such.
The system is solved for two time periods
For first time period 0<tau_M1<tau
For s at the L.H.S we have
For s at the R.H.S we have
For species m at the L.H.S we have the to set m value to a constant
For species m at the R.H.S we have the no flux condition
For second time period tau<tau_M1<tau_2
For s at the L.H.S and R.H.S we have the same such as
For m we have
For the species we have the L.H.S boundary condition for timr period (tau<tau_M1<tau_2). It is this boundary condtiuon that I am seeking help with. How can I go about this.
function [c25, c2, vode] = pde1dm_PS_OCP_v1()
% Piecewise PDE Implementation
% Pulsing Simulation
% Constants Used in the Nernst Equation
n = 2; % No. of Electrons Involved
F = 96485.3329; % C/mol
R = 8.314; % J/(mol.K) or CV/(mol.K)
Temp = 273.15+20; % K
N = 21;
m = 0;
kappa=1;
eta=1;
gamma=1;
mu=1;
tau_M1=1;
tau_M2=2;
l=1;
D_r=1;
Area = 0.0011; % Geometric Area (cm^2)
m_layer = 4.13E-05; % m_layer (mol/cm^3)
D_m = 8.14E-08; % cm^2/s (De of polymer)
k = n*F*Area*l*m_layer;
% DIMENSIONLESS PARAMETERS
chi = linspace(0, 1, N);
tau = linspace(0, tau_M1, N); % Dimensionless Time
% FIRST POTENTIAL STEP
E0 = 0.22;
E_set = .450;
epsilon1 = ((n*F)/(R*Temp))*(E_set-E0); % Dimensionless Potential
c_M_ox = 1/(1+exp(-epsilon1)); % Mox BC
ic_arg_1 = {@(x)ones(size(N)) ; @(x)zeros(size(N))};
IC = @(x)PDE_ND_PS_EK_IC(x, ic_arg_1);
BC = @(xl, yl, xr, yr, t)PDE_PS_EK_BC(xl, yl, xr, yr, c_M_ox);
sol1 = pde1dm(m, @(x, t, c, DcDx)PDE_ND_PS_EK(chi, tau, c, DcDx, kappa, eta, gamma, mu, D_r), …
IC, BC, chi, tau);
c1 = sol1(:, :, 1); % Substrate Conc.
c2 = sol1(:, :, 2); % Mox Conc.
% OPEN CIRCUIT POTENTIAL
tau2 = linspace(tau_M1, tau_M2, N); % Dimensionless Time
ic_arg_1 = {@(x)interp1(chi, sol1(N, :, 1), x) ; @(x)interp1(chi, sol1(N, :, 2), x)};
IC2 = @(x)PDE_ND_PS_EK_IC(x, ic_arg_1);
BC2 = @(xl, yl, xr, yr, t, v)PDE_PSw_EK_BC_2(xl, yl, xr, yr, v);
ode_IC = @() ode_ICFun(tau_M1);
opts.vectorized=’on’;
% sol2 = pde1dm(m, @(x, t, c, DcDx)PDE_ND_PS_EK(x, t, c, DcDx, kappa, eta, gamma, mu, D_r), …
% IC2, BC2, chi, tau2);
[sol2, vode] = pde1dm(m, @(x, t, c, DcDx)PDE_ND_PS_EK(x, t, c, DcDx, kappa, eta, gamma, mu, D_r), …
IC2, BC2, chi, tau2, @odeFunc, ode_IC, .99);
% Concentration Profiles c(i, j, k)(Solutions)
c14 = [c1; sol2(:, :, 1)]; % Substrate Conc.
c25 = [c2; sol2(:, :, 2)]; % Mox Conc.
c36 = 1-c25; % Mred Conc.
mox = abs(sol2(:, 1, 2));
mred = 1-mox;
E_PS = E_set.*ones(1,N);
for counter2 = 1:N
E_OCP(counter2) = E0 + (((R*Temp)/(n*F).*(log(mox(counter2,:)./mred(counter2,:)))));
end
E_array = [E_PS, E_OCP];
% This is the case finder function
% Video(kappa, eta, gamma, mu, tau_M1, tau_M2, l, D_m, N, chi, c14, c25, c36, E_array)
function [cc, ff, ss] = PDE_ND_PS_EK(chi, tau, c, DcDx, kappa, eta, gamma, mu, D_r)
% S; Mox;
cc = [ D_r; 1];
ff = [ 1; 1].*DcDx;
S_kin = ((gamma/eta)*(kappa^2)*c(1)*c(2))./…
(gamma.*c(2).*(1+(mu.*c(1)))+c(1));
M_kin = ((kappa^2).*c(1).*c(2))./…
(gamma.*c(2).*(1+(mu.*c(1)))+c(1));
ss = [-S_kin; -M_kin];
end
function c0 = PDE_ND_PS_EK_IC(x, ic_arg_1)
% Substrate; Mox;
c0 = [ic_arg_1{1}(x).’; ic_arg_1{2}(x).’];
end
function [pl, ql, pr, qr] = PDE_PS_EK_BC(xl, yl, xr, yr, c_M_ox)
% ———————
% | | |
% | | |
% | | |
% | | |
% | | |
% | | |
% | | |
% ——-|————-
% pl pr
% Substrate; Mediator;
pl = [0 ; yl(2)-c_M_ox];
ql = [1 ; 0];
pr = [yr(1)-1 ; 0];
qr = [0 ; 1];
end
function [pl, ql, pr, qr] = PDE_PSw_EK_BC_2(xl, yl, xr, yr, t, v, vdot)
pl = [0 ; 0];
ql = [1 ; 1];
pr = [yr(1)-1 ; 0];
qr = [0 ; 1];
end
function f = odeFunc(x, t, c, DcDx, v, vdot)
f = ((1E-03./(v(1)*(1-v(1))))*(DcDx))-vdot(1);
end
function v0=ode_ICFun(tau_0)
v0 = ones(tau_0).*.9;
end
function myVideo = Video(kappa, eta, gamma, mu, tau_M1, tau_M2, l, D_m, N, chi, c14, c25, c36, E_array)
% Initialize Video
G = figure(1);
myVideo = VideoWriter(sprintf(‘κ%.2f γ%.2f η%.2f µ%.2f’, kappa, gamma, eta, mu));
myVideo.FrameRate = 10; % can adjust this, 5 – 10 works well for me
myVideo.Quality = 100;
open(myVideo);
color = ‘red’;
u = uicontrol(G, ‘Style’,’slider’,’Position’,[0 40 10 360],…
‘Min’,0,’Max’,N*2,’Value’,0);
tspan1 = linspace(0, round(((tau_M1*(l^2))/D_m)), N);
tspan2 = linspace(round(((tau_M1*(l^2))/D_m)), round(((tau_M2*l^2)/D_m),2), N);
tspan = [tspan1,tspan2];
for ii = 2:(N*2)
% Plot Species Conc. in the Layer
subplot(2,1,1);
yyaxis left
plot(chi,c25(ii,:),chi,c36(ii,:), ‘LineWidth’, 2);
ylabel(‘M’)
ylim([0,1]);
yyaxis right
plot(chi, c14(ii,:), ‘LineWidth’, 2);
ylabel(‘S’)
ylim([0,1]);
xlabel(‘chi’);
legend(‘M_{ox}’,’M_{red}’, ‘S’);
title(‘Normalized Concentration’);
subplot(2,1,2);
addpoints(animatedline(tspan,E_array,’marker’, ‘.’, ‘markersize’, 6, ‘color’, color,…
‘linestyle’, ‘–‘, ‘MaximumNumPoints’, 1),tspan(ii),E_array(ii));
ylim([0,0.5]);
xlim([0, tspan(end)]);
hold on;
title([‘Potential = ‘, num2str(E_array(ii))]);
% text(8, 8,{”,”})
drawnow
xlabel(‘t / s’); ylabel(‘E / V’);
u.Value = ii;
uicontrol(‘Style’,’Edit’,’Position’,[0,00,40,40], …
‘String’,num2str(tspan(ii),3));
pause(0.001)
M = getframe(G);
writeVideo(myVideo, M);
end
end
end Hi all,
I am trying to simulate a coupled PDE system with a non typical boundary conditions.
My coupled PDE system is as such.
The system is solved for two time periods
For first time period 0<tau_M1<tau
For s at the L.H.S we have
For s at the R.H.S we have
For species m at the L.H.S we have the to set m value to a constant
For species m at the R.H.S we have the no flux condition
For second time period tau<tau_M1<tau_2
For s at the L.H.S and R.H.S we have the same such as
For m we have
For the species we have the L.H.S boundary condition for timr period (tau<tau_M1<tau_2). It is this boundary condtiuon that I am seeking help with. How can I go about this.
function [c25, c2, vode] = pde1dm_PS_OCP_v1()
% Piecewise PDE Implementation
% Pulsing Simulation
% Constants Used in the Nernst Equation
n = 2; % No. of Electrons Involved
F = 96485.3329; % C/mol
R = 8.314; % J/(mol.K) or CV/(mol.K)
Temp = 273.15+20; % K
N = 21;
m = 0;
kappa=1;
eta=1;
gamma=1;
mu=1;
tau_M1=1;
tau_M2=2;
l=1;
D_r=1;
Area = 0.0011; % Geometric Area (cm^2)
m_layer = 4.13E-05; % m_layer (mol/cm^3)
D_m = 8.14E-08; % cm^2/s (De of polymer)
k = n*F*Area*l*m_layer;
% DIMENSIONLESS PARAMETERS
chi = linspace(0, 1, N);
tau = linspace(0, tau_M1, N); % Dimensionless Time
% FIRST POTENTIAL STEP
E0 = 0.22;
E_set = .450;
epsilon1 = ((n*F)/(R*Temp))*(E_set-E0); % Dimensionless Potential
c_M_ox = 1/(1+exp(-epsilon1)); % Mox BC
ic_arg_1 = {@(x)ones(size(N)) ; @(x)zeros(size(N))};
IC = @(x)PDE_ND_PS_EK_IC(x, ic_arg_1);
BC = @(xl, yl, xr, yr, t)PDE_PS_EK_BC(xl, yl, xr, yr, c_M_ox);
sol1 = pde1dm(m, @(x, t, c, DcDx)PDE_ND_PS_EK(chi, tau, c, DcDx, kappa, eta, gamma, mu, D_r), …
IC, BC, chi, tau);
c1 = sol1(:, :, 1); % Substrate Conc.
c2 = sol1(:, :, 2); % Mox Conc.
% OPEN CIRCUIT POTENTIAL
tau2 = linspace(tau_M1, tau_M2, N); % Dimensionless Time
ic_arg_1 = {@(x)interp1(chi, sol1(N, :, 1), x) ; @(x)interp1(chi, sol1(N, :, 2), x)};
IC2 = @(x)PDE_ND_PS_EK_IC(x, ic_arg_1);
BC2 = @(xl, yl, xr, yr, t, v)PDE_PSw_EK_BC_2(xl, yl, xr, yr, v);
ode_IC = @() ode_ICFun(tau_M1);
opts.vectorized=’on’;
% sol2 = pde1dm(m, @(x, t, c, DcDx)PDE_ND_PS_EK(x, t, c, DcDx, kappa, eta, gamma, mu, D_r), …
% IC2, BC2, chi, tau2);
[sol2, vode] = pde1dm(m, @(x, t, c, DcDx)PDE_ND_PS_EK(x, t, c, DcDx, kappa, eta, gamma, mu, D_r), …
IC2, BC2, chi, tau2, @odeFunc, ode_IC, .99);
% Concentration Profiles c(i, j, k)(Solutions)
c14 = [c1; sol2(:, :, 1)]; % Substrate Conc.
c25 = [c2; sol2(:, :, 2)]; % Mox Conc.
c36 = 1-c25; % Mred Conc.
mox = abs(sol2(:, 1, 2));
mred = 1-mox;
E_PS = E_set.*ones(1,N);
for counter2 = 1:N
E_OCP(counter2) = E0 + (((R*Temp)/(n*F).*(log(mox(counter2,:)./mred(counter2,:)))));
end
E_array = [E_PS, E_OCP];
% This is the case finder function
% Video(kappa, eta, gamma, mu, tau_M1, tau_M2, l, D_m, N, chi, c14, c25, c36, E_array)
function [cc, ff, ss] = PDE_ND_PS_EK(chi, tau, c, DcDx, kappa, eta, gamma, mu, D_r)
% S; Mox;
cc = [ D_r; 1];
ff = [ 1; 1].*DcDx;
S_kin = ((gamma/eta)*(kappa^2)*c(1)*c(2))./…
(gamma.*c(2).*(1+(mu.*c(1)))+c(1));
M_kin = ((kappa^2).*c(1).*c(2))./…
(gamma.*c(2).*(1+(mu.*c(1)))+c(1));
ss = [-S_kin; -M_kin];
end
function c0 = PDE_ND_PS_EK_IC(x, ic_arg_1)
% Substrate; Mox;
c0 = [ic_arg_1{1}(x).’; ic_arg_1{2}(x).’];
end
function [pl, ql, pr, qr] = PDE_PS_EK_BC(xl, yl, xr, yr, c_M_ox)
% ———————
% | | |
% | | |
% | | |
% | | |
% | | |
% | | |
% | | |
% ——-|————-
% pl pr
% Substrate; Mediator;
pl = [0 ; yl(2)-c_M_ox];
ql = [1 ; 0];
pr = [yr(1)-1 ; 0];
qr = [0 ; 1];
end
function [pl, ql, pr, qr] = PDE_PSw_EK_BC_2(xl, yl, xr, yr, t, v, vdot)
pl = [0 ; 0];
ql = [1 ; 1];
pr = [yr(1)-1 ; 0];
qr = [0 ; 1];
end
function f = odeFunc(x, t, c, DcDx, v, vdot)
f = ((1E-03./(v(1)*(1-v(1))))*(DcDx))-vdot(1);
end
function v0=ode_ICFun(tau_0)
v0 = ones(tau_0).*.9;
end
function myVideo = Video(kappa, eta, gamma, mu, tau_M1, tau_M2, l, D_m, N, chi, c14, c25, c36, E_array)
% Initialize Video
G = figure(1);
myVideo = VideoWriter(sprintf(‘κ%.2f γ%.2f η%.2f µ%.2f’, kappa, gamma, eta, mu));
myVideo.FrameRate = 10; % can adjust this, 5 – 10 works well for me
myVideo.Quality = 100;
open(myVideo);
color = ‘red’;
u = uicontrol(G, ‘Style’,’slider’,’Position’,[0 40 10 360],…
‘Min’,0,’Max’,N*2,’Value’,0);
tspan1 = linspace(0, round(((tau_M1*(l^2))/D_m)), N);
tspan2 = linspace(round(((tau_M1*(l^2))/D_m)), round(((tau_M2*l^2)/D_m),2), N);
tspan = [tspan1,tspan2];
for ii = 2:(N*2)
% Plot Species Conc. in the Layer
subplot(2,1,1);
yyaxis left
plot(chi,c25(ii,:),chi,c36(ii,:), ‘LineWidth’, 2);
ylabel(‘M’)
ylim([0,1]);
yyaxis right
plot(chi, c14(ii,:), ‘LineWidth’, 2);
ylabel(‘S’)
ylim([0,1]);
xlabel(‘chi’);
legend(‘M_{ox}’,’M_{red}’, ‘S’);
title(‘Normalized Concentration’);
subplot(2,1,2);
addpoints(animatedline(tspan,E_array,’marker’, ‘.’, ‘markersize’, 6, ‘color’, color,…
‘linestyle’, ‘–‘, ‘MaximumNumPoints’, 1),tspan(ii),E_array(ii));
ylim([0,0.5]);
xlim([0, tspan(end)]);
hold on;
title([‘Potential = ‘, num2str(E_array(ii))]);
% text(8, 8,{”,”})
drawnow
xlabel(‘t / s’); ylabel(‘E / V’);
u.Value = ii;
uicontrol(‘Style’,’Edit’,’Position’,[0,00,40,40], …
‘String’,num2str(tspan(ii),3));
pause(0.001)
M = getframe(G);
writeVideo(myVideo, M);
end
end
end pde MATLAB Answers — New Questions
How to add a legend for a boxplot that indicates how the boxplot was created (summary statistics)?
Hi folks, I have a simple boxplot and I can’t figure out how to make a legend like the one shown in the photograph below. Ideally, the symbols and line specs would all match the associated text.
Perhaps doing it using the annotation or note tool? Was wondering if anyone has done this before. This type of formatting is a requirement for a journal paper.
For example (see example.png) I’ve gotten this far:
data = [1 2 3 4 4 5 5 6 6 7 8 9 13]
figure; boxplot(data);
a = get(get(gca,’children’),’children’); % Get the handles of all the objects
legend([a(1) a(2) a(3) a(4)],{‘Outliers’,’Median’,’25-75%’,’+/-1.5 IQR’})
But am wondering if there are alternative or better ways, and perhaps a way to show the blue bounding box? Just wanted to hear y’alls thoughts. Cheers.Hi folks, I have a simple boxplot and I can’t figure out how to make a legend like the one shown in the photograph below. Ideally, the symbols and line specs would all match the associated text.
Perhaps doing it using the annotation or note tool? Was wondering if anyone has done this before. This type of formatting is a requirement for a journal paper.
For example (see example.png) I’ve gotten this far:
data = [1 2 3 4 4 5 5 6 6 7 8 9 13]
figure; boxplot(data);
a = get(get(gca,’children’),’children’); % Get the handles of all the objects
legend([a(1) a(2) a(3) a(4)],{‘Outliers’,’Median’,’25-75%’,’+/-1.5 IQR’})
But am wondering if there are alternative or better ways, and perhaps a way to show the blue bounding box? Just wanted to hear y’alls thoughts. Cheers. Hi folks, I have a simple boxplot and I can’t figure out how to make a legend like the one shown in the photograph below. Ideally, the symbols and line specs would all match the associated text.
Perhaps doing it using the annotation or note tool? Was wondering if anyone has done this before. This type of formatting is a requirement for a journal paper.
For example (see example.png) I’ve gotten this far:
data = [1 2 3 4 4 5 5 6 6 7 8 9 13]
figure; boxplot(data);
a = get(get(gca,’children’),’children’); % Get the handles of all the objects
legend([a(1) a(2) a(3) a(4)],{‘Outliers’,’Median’,’25-75%’,’+/-1.5 IQR’})
But am wondering if there are alternative or better ways, and perhaps a way to show the blue bounding box? Just wanted to hear y’alls thoughts. Cheers. boxplot, legend, figure, labels MATLAB Answers — New Questions
Unable to save trainingstats in MATLAB 2024a
I am runnning a training script based on a simulink environment. At the end when I try to save the training results, it always throws an error. I am wondering if it has something to do with the .mat format. This issue does not occur in Matlab 2023a.
%% Train the agent
trainingStats = train(agent, env, trainOpts);
%% Save Agent
results_dir = strcat(‘./Results/’,num2str(time(1)),’0′,num2str(time(2)),num2str(time(3)));
mkdir(results_dir)
save(strcat(results_dir,’/TrainingStats.mat’),"trainingStats")
generatePolicyBlock(agent)
save_system(‘untitled’,’Agent’)
%% Simulate
%addpath(‘D:MastersHiWiTikz’)
simEpisodes = 1;
simOpts = rlSimulationOptions("MaxSteps",1250,…
"NumSimulations", simEpisodes);
experience = sim(env,agent,simOpts);
save(strcat(results_dir,’/Experience.mat’),"experience")
The error message is usually:
>> load(‘C:Usersvasu3DocumentsWorksharma_ma_rlonh2dfacados_implementationrlsavedAgentsPPO20240814Agent5852.mat’, ‘savedAgentResult’)
Error using load
Cannot read file
C:Usersvasu3DocumentsWorksharma_ma_rlonh2dfacados_implementationrlsavedAgentsPPO20240814Agent5852.mat.
Warning: Directory already exists.
Error using save
Unable to save file
‘C:Usersvasu3DocumentsWorksharma_ma_rlonh2dfacados_implementationrlResults20240814TrainingStats.mat’.
The file could not be closed, and might now be corrupt.
Error in run_H2DFRL_GRU (line 195)
save(strcat(results_dir,’/TrainingStats.mat’),"trainingStats")
Warning: Unable to read some of the variables due to unknown MAT-file error.
> In matfinfo (line 9)
In finfo>fetchDescriptions (line 278)
In finfo (line 82)
In uiimport/gatherFilePreviewData (line 419)
In uiimport (line 260)
Error using load
Unable to read file
‘C:Usersvasu3DocumentsWorksharma_ma_rlonh2dfacados_implementationrlResults20240814TrainingStats.mat’. Input must be a
MAT-file or an ASCII file containing numeric data with same number of columns in each row.
Error in uiimport/runImportdata (line 470)
datastruct = load(‘-ascii’, fileAbsolutePath);
Error in uiimport/gatherFilePreviewData (line 438)
[datastruct, textDelimiter, headerLines]= runImportdata(fileAbsolutePath, type);
Error in uiimport (line 260)
gatherFilePreviewData(fileAbsolutePath);
Could someone please help outI am runnning a training script based on a simulink environment. At the end when I try to save the training results, it always throws an error. I am wondering if it has something to do with the .mat format. This issue does not occur in Matlab 2023a.
%% Train the agent
trainingStats = train(agent, env, trainOpts);
%% Save Agent
results_dir = strcat(‘./Results/’,num2str(time(1)),’0′,num2str(time(2)),num2str(time(3)));
mkdir(results_dir)
save(strcat(results_dir,’/TrainingStats.mat’),"trainingStats")
generatePolicyBlock(agent)
save_system(‘untitled’,’Agent’)
%% Simulate
%addpath(‘D:MastersHiWiTikz’)
simEpisodes = 1;
simOpts = rlSimulationOptions("MaxSteps",1250,…
"NumSimulations", simEpisodes);
experience = sim(env,agent,simOpts);
save(strcat(results_dir,’/Experience.mat’),"experience")
The error message is usually:
>> load(‘C:Usersvasu3DocumentsWorksharma_ma_rlonh2dfacados_implementationrlsavedAgentsPPO20240814Agent5852.mat’, ‘savedAgentResult’)
Error using load
Cannot read file
C:Usersvasu3DocumentsWorksharma_ma_rlonh2dfacados_implementationrlsavedAgentsPPO20240814Agent5852.mat.
Warning: Directory already exists.
Error using save
Unable to save file
‘C:Usersvasu3DocumentsWorksharma_ma_rlonh2dfacados_implementationrlResults20240814TrainingStats.mat’.
The file could not be closed, and might now be corrupt.
Error in run_H2DFRL_GRU (line 195)
save(strcat(results_dir,’/TrainingStats.mat’),"trainingStats")
Warning: Unable to read some of the variables due to unknown MAT-file error.
> In matfinfo (line 9)
In finfo>fetchDescriptions (line 278)
In finfo (line 82)
In uiimport/gatherFilePreviewData (line 419)
In uiimport (line 260)
Error using load
Unable to read file
‘C:Usersvasu3DocumentsWorksharma_ma_rlonh2dfacados_implementationrlResults20240814TrainingStats.mat’. Input must be a
MAT-file or an ASCII file containing numeric data with same number of columns in each row.
Error in uiimport/runImportdata (line 470)
datastruct = load(‘-ascii’, fileAbsolutePath);
Error in uiimport/gatherFilePreviewData (line 438)
[datastruct, textDelimiter, headerLines]= runImportdata(fileAbsolutePath, type);
Error in uiimport (line 260)
gatherFilePreviewData(fileAbsolutePath);
Could someone please help out I am runnning a training script based on a simulink environment. At the end when I try to save the training results, it always throws an error. I am wondering if it has something to do with the .mat format. This issue does not occur in Matlab 2023a.
%% Train the agent
trainingStats = train(agent, env, trainOpts);
%% Save Agent
results_dir = strcat(‘./Results/’,num2str(time(1)),’0′,num2str(time(2)),num2str(time(3)));
mkdir(results_dir)
save(strcat(results_dir,’/TrainingStats.mat’),"trainingStats")
generatePolicyBlock(agent)
save_system(‘untitled’,’Agent’)
%% Simulate
%addpath(‘D:MastersHiWiTikz’)
simEpisodes = 1;
simOpts = rlSimulationOptions("MaxSteps",1250,…
"NumSimulations", simEpisodes);
experience = sim(env,agent,simOpts);
save(strcat(results_dir,’/Experience.mat’),"experience")
The error message is usually:
>> load(‘C:Usersvasu3DocumentsWorksharma_ma_rlonh2dfacados_implementationrlsavedAgentsPPO20240814Agent5852.mat’, ‘savedAgentResult’)
Error using load
Cannot read file
C:Usersvasu3DocumentsWorksharma_ma_rlonh2dfacados_implementationrlsavedAgentsPPO20240814Agent5852.mat.
Warning: Directory already exists.
Error using save
Unable to save file
‘C:Usersvasu3DocumentsWorksharma_ma_rlonh2dfacados_implementationrlResults20240814TrainingStats.mat’.
The file could not be closed, and might now be corrupt.
Error in run_H2DFRL_GRU (line 195)
save(strcat(results_dir,’/TrainingStats.mat’),"trainingStats")
Warning: Unable to read some of the variables due to unknown MAT-file error.
> In matfinfo (line 9)
In finfo>fetchDescriptions (line 278)
In finfo (line 82)
In uiimport/gatherFilePreviewData (line 419)
In uiimport (line 260)
Error using load
Unable to read file
‘C:Usersvasu3DocumentsWorksharma_ma_rlonh2dfacados_implementationrlResults20240814TrainingStats.mat’. Input must be a
MAT-file or an ASCII file containing numeric data with same number of columns in each row.
Error in uiimport/runImportdata (line 470)
datastruct = load(‘-ascii’, fileAbsolutePath);
Error in uiimport/gatherFilePreviewData (line 438)
[datastruct, textDelimiter, headerLines]= runImportdata(fileAbsolutePath, type);
Error in uiimport (line 260)
gatherFilePreviewData(fileAbsolutePath);
Could someone please help out reinforcement learning., deep learning, machine learning, bug, matlab MATLAB Answers — New Questions
Cannot compile app with Segment Anything Model SAM due to license?
Hi,
I could not compile my app with SAM due to the following error.
Where can I find the specific LICENSE that states why and how SAM cannot be packaged?
Or am I misunderstanding anything about specifying parameters for packaging? I’m very new to compiling app in Matlab.
Thanks,
Lam
mcc -o v9 -W ‘WinMain:v9,version=1.0’ -T link:exe -d ‘D:OneDrive – ZeonCorporation1.WORK24_MatlabSAMworkedv9for_testing’ -v ‘D:OneDrive – ZeonCorporation1.WORK24_MatlabSAMworkedv9.m’ -a ‘D:OneDrive – ZeonCorporation1.WORK24_MatlabSAMworkedLICENSE’ -a C:ProgramDataMATLABSupportPackagesR2024atoolboximagessupportpackagessamdatapreTrainedSAM.mat -a C:ProgramDataMATLABSupportPackagesR2024atoolboximagessupportpackagessam+matlabshared+supportpkg+internal+sppkglegacySAM.m -r ‘C:Program FilesMATLABR2024atoolboxcompilerpackagingResourcesdefault_icon.ico’ -Z ‘Deep Learning Toolbox Converter for ONNX Model Format’
Compiler version: 24.1 (R2024a)
Analyzing file dependencies.
Warning: Removed http proxy service credentials from preference settings.
Warning: In "C:ProgramDataMATLABSupportPackagesR2024atoolboximagessupportpackagessam+matlabshared+supportpkg+internal+sppkglegacySAM.m", "matlabshared.supportpkg.internal.sppkglegacy.SupportPackageRegistryPluginBase" are excluded from packaging for the MATLAB Runtime environment according to the MATLAB Compiler license. Either remove the file or function from your code, or use the MATLAB function "isdeployed" to ensure the function is not invoked in the deployed component.
foundation::storage::vfs::Exception
mcc failed.Hi,
I could not compile my app with SAM due to the following error.
Where can I find the specific LICENSE that states why and how SAM cannot be packaged?
Or am I misunderstanding anything about specifying parameters for packaging? I’m very new to compiling app in Matlab.
Thanks,
Lam
mcc -o v9 -W ‘WinMain:v9,version=1.0’ -T link:exe -d ‘D:OneDrive – ZeonCorporation1.WORK24_MatlabSAMworkedv9for_testing’ -v ‘D:OneDrive – ZeonCorporation1.WORK24_MatlabSAMworkedv9.m’ -a ‘D:OneDrive – ZeonCorporation1.WORK24_MatlabSAMworkedLICENSE’ -a C:ProgramDataMATLABSupportPackagesR2024atoolboximagessupportpackagessamdatapreTrainedSAM.mat -a C:ProgramDataMATLABSupportPackagesR2024atoolboximagessupportpackagessam+matlabshared+supportpkg+internal+sppkglegacySAM.m -r ‘C:Program FilesMATLABR2024atoolboxcompilerpackagingResourcesdefault_icon.ico’ -Z ‘Deep Learning Toolbox Converter for ONNX Model Format’
Compiler version: 24.1 (R2024a)
Analyzing file dependencies.
Warning: Removed http proxy service credentials from preference settings.
Warning: In "C:ProgramDataMATLABSupportPackagesR2024atoolboximagessupportpackagessam+matlabshared+supportpkg+internal+sppkglegacySAM.m", "matlabshared.supportpkg.internal.sppkglegacy.SupportPackageRegistryPluginBase" are excluded from packaging for the MATLAB Runtime environment according to the MATLAB Compiler license. Either remove the file or function from your code, or use the MATLAB function "isdeployed" to ensure the function is not invoked in the deployed component.
foundation::storage::vfs::Exception
mcc failed. Hi,
I could not compile my app with SAM due to the following error.
Where can I find the specific LICENSE that states why and how SAM cannot be packaged?
Or am I misunderstanding anything about specifying parameters for packaging? I’m very new to compiling app in Matlab.
Thanks,
Lam
mcc -o v9 -W ‘WinMain:v9,version=1.0’ -T link:exe -d ‘D:OneDrive – ZeonCorporation1.WORK24_MatlabSAMworkedv9for_testing’ -v ‘D:OneDrive – ZeonCorporation1.WORK24_MatlabSAMworkedv9.m’ -a ‘D:OneDrive – ZeonCorporation1.WORK24_MatlabSAMworkedLICENSE’ -a C:ProgramDataMATLABSupportPackagesR2024atoolboximagessupportpackagessamdatapreTrainedSAM.mat -a C:ProgramDataMATLABSupportPackagesR2024atoolboximagessupportpackagessam+matlabshared+supportpkg+internal+sppkglegacySAM.m -r ‘C:Program FilesMATLABR2024atoolboxcompilerpackagingResourcesdefault_icon.ico’ -Z ‘Deep Learning Toolbox Converter for ONNX Model Format’
Compiler version: 24.1 (R2024a)
Analyzing file dependencies.
Warning: Removed http proxy service credentials from preference settings.
Warning: In "C:ProgramDataMATLABSupportPackagesR2024atoolboximagessupportpackagessam+matlabshared+supportpkg+internal+sppkglegacySAM.m", "matlabshared.supportpkg.internal.sppkglegacy.SupportPackageRegistryPluginBase" are excluded from packaging for the MATLAB Runtime environment according to the MATLAB Compiler license. Either remove the file or function from your code, or use the MATLAB function "isdeployed" to ensure the function is not invoked in the deployed component.
foundation::storage::vfs::Exception
mcc failed. segment anything model, sam, compiler, matlab compiler MATLAB Answers — New Questions
Parameter influence estimation using monte carlo
Hi,
I have 14 parameters of groundwater, Ca, Mg, pH, Cl, NO3, TD, EC.. etc. I want to estimate the influence of each parameters for groundwater quality using monte carlo but had no idea about the coding. I try to look out for some coding but really didnt get it.
Please helpHi,
I have 14 parameters of groundwater, Ca, Mg, pH, Cl, NO3, TD, EC.. etc. I want to estimate the influence of each parameters for groundwater quality using monte carlo but had no idea about the coding. I try to look out for some coding but really didnt get it.
Please help Hi,
I have 14 parameters of groundwater, Ca, Mg, pH, Cl, NO3, TD, EC.. etc. I want to estimate the influence of each parameters for groundwater quality using monte carlo but had no idea about the coding. I try to look out for some coding but really didnt get it.
Please help monte carlo MATLAB Answers — New Questions
How to setup system path to vivado path?
While using hdlsetuptoolpath the system path is being prepended twice.
First the correct path and second time a non existent path.
Due to this I can’t validate the model it says Xilinx Vivado not found.While using hdlsetuptoolpath the system path is being prepended twice.
First the correct path and second time a non existent path.
Due to this I can’t validate the model it says Xilinx Vivado not found. While using hdlsetuptoolpath the system path is being prepended twice.
First the correct path and second time a non existent path.
Due to this I can’t validate the model it says Xilinx Vivado not found. hdlsetuptoolpath, soc builder MATLAB Answers — New Questions
sym to double data type:
I want to obtain the y_values in double but they are in symbolic form. Anyway I can get around this? Thank you!
L_e = 0.7199;
Y_poly = @(x) a4*x.^4 + a3*x.^3 + a2*x.^2 + a1*x + a0;
x_values = linspace(0, L_e, 100); % 100 points from 0 to L_e
y_values = Y_poly(x_values);
The values for the coefficients are:
a4 = -0.324785
a3 = 0.472768
a2 = -0.011102
a1 = 0.000000
a0 = 1.000000I want to obtain the y_values in double but they are in symbolic form. Anyway I can get around this? Thank you!
L_e = 0.7199;
Y_poly = @(x) a4*x.^4 + a3*x.^3 + a2*x.^2 + a1*x + a0;
x_values = linspace(0, L_e, 100); % 100 points from 0 to L_e
y_values = Y_poly(x_values);
The values for the coefficients are:
a4 = -0.324785
a3 = 0.472768
a2 = -0.011102
a1 = 0.000000
a0 = 1.000000 I want to obtain the y_values in double but they are in symbolic form. Anyway I can get around this? Thank you!
L_e = 0.7199;
Y_poly = @(x) a4*x.^4 + a3*x.^3 + a2*x.^2 + a1*x + a0;
x_values = linspace(0, L_e, 100); % 100 points from 0 to L_e
y_values = Y_poly(x_values);
The values for the coefficients are:
a4 = -0.324785
a3 = 0.472768
a2 = -0.011102
a1 = 0.000000
a0 = 1.000000 #sym, #double, #polynomial MATLAB Answers — New Questions
Issue with YOLO4
Hi,
I tried to run the yolo code , but i get the error below :
‘validateInputData’ is used in the following examples:
Object Detection Using YOLO v3 Deep Learning
Object Detection Using YOLO v4 Deep Learning
Prune Filters in a Detection Network Using Taylor Scores
Error in yolo4Test (line 45)
validateInputData(trainingData);
Could you help please ?
Iam trying to run the Mathworks code for yolo4 ?Hi,
I tried to run the yolo code , but i get the error below :
‘validateInputData’ is used in the following examples:
Object Detection Using YOLO v3 Deep Learning
Object Detection Using YOLO v4 Deep Learning
Prune Filters in a Detection Network Using Taylor Scores
Error in yolo4Test (line 45)
validateInputData(trainingData);
Could you help please ?
Iam trying to run the Mathworks code for yolo4 ? Hi,
I tried to run the yolo code , but i get the error below :
‘validateInputData’ is used in the following examples:
Object Detection Using YOLO v3 Deep Learning
Object Detection Using YOLO v4 Deep Learning
Prune Filters in a Detection Network Using Taylor Scores
Error in yolo4Test (line 45)
validateInputData(trainingData);
Could you help please ?
Iam trying to run the Mathworks code for yolo4 ? deep learning, yolo4 MATLAB Answers — New Questions
Error: variable-size matrix type is not supported for HDL code
I use the fixed-point tool to fixed-point the subsystem and then generate Verilog, but the following error occurs.
The model contains constructs that are unsupported for HDL code generation. HDL Coder ‘c’ : Error: variable-size matrix type is not supported for HDL code generation. Function ’eml_fixpt_times’ (#33554529.1887.1910), line 65, column 5 Function ‘times’ (#33554530.5290.5318), line 146, column 27 Function ‘mtimes’ (#33554528.2252.2264), line 62, column 9 Function ‘forSubsystem/MATLAB Function1/MATLAB Function1_FixPt’ (#369.531.542), line 23, column 13
In #369.531.542, the error is related to miu*x*en(i), i tried to use sss=miu*x*en(i) instead, but it ended up showing Subscripted assignment dimension mismatch: [1] ~= [5]. Error in ‘testfixed/testforSubsystem/MATLAB Function’ (line 23) sss = miu*x*en(i);
I fixed the above problem,
sss= zeros(1,5);
sss = miu*x*en(i);
wn(:)=wn+sss;
but still failed to generate Verilog,
The model contains constructs that are unsupported for HDL code generation. HDL Coder ‘c’ : Error: variable-size matrix type is not supported for HDL code generation. Function ’eml_fixpt_times’ (#33554529.1887.1910), line 65, column 5 Function ‘times’ (#33554530.5290.5318), line 146, column 27 Function ‘mtimes’ (#33554528.2252.2264), line 62, column 9 Function ‘forsubsystem/MATLAB Function’ (#998.580.591), line 23, column 1
The key to the error is on en(i), why does it cause this error?I use the fixed-point tool to fixed-point the subsystem and then generate Verilog, but the following error occurs.
The model contains constructs that are unsupported for HDL code generation. HDL Coder ‘c’ : Error: variable-size matrix type is not supported for HDL code generation. Function ’eml_fixpt_times’ (#33554529.1887.1910), line 65, column 5 Function ‘times’ (#33554530.5290.5318), line 146, column 27 Function ‘mtimes’ (#33554528.2252.2264), line 62, column 9 Function ‘forSubsystem/MATLAB Function1/MATLAB Function1_FixPt’ (#369.531.542), line 23, column 13
In #369.531.542, the error is related to miu*x*en(i), i tried to use sss=miu*x*en(i) instead, but it ended up showing Subscripted assignment dimension mismatch: [1] ~= [5]. Error in ‘testfixed/testforSubsystem/MATLAB Function’ (line 23) sss = miu*x*en(i);
I fixed the above problem,
sss= zeros(1,5);
sss = miu*x*en(i);
wn(:)=wn+sss;
but still failed to generate Verilog,
The model contains constructs that are unsupported for HDL code generation. HDL Coder ‘c’ : Error: variable-size matrix type is not supported for HDL code generation. Function ’eml_fixpt_times’ (#33554529.1887.1910), line 65, column 5 Function ‘times’ (#33554530.5290.5318), line 146, column 27 Function ‘mtimes’ (#33554528.2252.2264), line 62, column 9 Function ‘forsubsystem/MATLAB Function’ (#998.580.591), line 23, column 1
The key to the error is on en(i), why does it cause this error? I use the fixed-point tool to fixed-point the subsystem and then generate Verilog, but the following error occurs.
The model contains constructs that are unsupported for HDL code generation. HDL Coder ‘c’ : Error: variable-size matrix type is not supported for HDL code generation. Function ’eml_fixpt_times’ (#33554529.1887.1910), line 65, column 5 Function ‘times’ (#33554530.5290.5318), line 146, column 27 Function ‘mtimes’ (#33554528.2252.2264), line 62, column 9 Function ‘forSubsystem/MATLAB Function1/MATLAB Function1_FixPt’ (#369.531.542), line 23, column 13
In #369.531.542, the error is related to miu*x*en(i), i tried to use sss=miu*x*en(i) instead, but it ended up showing Subscripted assignment dimension mismatch: [1] ~= [5]. Error in ‘testfixed/testforSubsystem/MATLAB Function’ (line 23) sss = miu*x*en(i);
I fixed the above problem,
sss= zeros(1,5);
sss = miu*x*en(i);
wn(:)=wn+sss;
but still failed to generate Verilog,
The model contains constructs that are unsupported for HDL code generation. HDL Coder ‘c’ : Error: variable-size matrix type is not supported for HDL code generation. Function ’eml_fixpt_times’ (#33554529.1887.1910), line 65, column 5 Function ‘times’ (#33554530.5290.5318), line 146, column 27 Function ‘mtimes’ (#33554528.2252.2264), line 62, column 9 Function ‘forsubsystem/MATLAB Function’ (#998.580.591), line 23, column 1
The key to the error is on en(i), why does it cause this error? simulink model, variable-size, generate code MATLAB Answers — New Questions
quadprog output: this problem is non-convex
I am trying to solve a quadratic optimization problem but quadprog keeps telling me that my problem is non-convex.
After several experiments, I found that the problem comes from the equation constraints matrix A, which is a 57250*57441 matrix.
For the following code,
[m, n] = size(A);
assert(m < n);
options = optimoptions(‘quadprog’,’Display’,’off’);
[Pwp,fval,exitflag,output] = quadprog(speye(n), zeros(n,1), [], [], A, zeros(m, 1), [], [], [], options);
obviously the solution should be the all-zero vector. But the output still said that this is a nonconvex problem.I am trying to solve a quadratic optimization problem but quadprog keeps telling me that my problem is non-convex.
After several experiments, I found that the problem comes from the equation constraints matrix A, which is a 57250*57441 matrix.
For the following code,
[m, n] = size(A);
assert(m < n);
options = optimoptions(‘quadprog’,’Display’,’off’);
[Pwp,fval,exitflag,output] = quadprog(speye(n), zeros(n,1), [], [], A, zeros(m, 1), [], [], [], options);
obviously the solution should be the all-zero vector. But the output still said that this is a nonconvex problem. I am trying to solve a quadratic optimization problem but quadprog keeps telling me that my problem is non-convex.
After several experiments, I found that the problem comes from the equation constraints matrix A, which is a 57250*57441 matrix.
For the following code,
[m, n] = size(A);
assert(m < n);
options = optimoptions(‘quadprog’,’Display’,’off’);
[Pwp,fval,exitflag,output] = quadprog(speye(n), zeros(n,1), [], [], A, zeros(m, 1), [], [], [], options);
obviously the solution should be the all-zero vector. But the output still said that this is a nonconvex problem. optimization MATLAB Answers — New Questions
How to change in marker size in the global legend?
Hi,
I’m making a plot containing a few subplots using the function tiledlayout, and I created a global legend using the code
leg = legend({‘A’,’B’,’C’})
leg.Layout.Tile = ‘North’
However with this I cann’t use the previous method to change the marker size in the legend, because it requirs two outputs from the legend, and it will override the previous code.
[~,icons] = legend({‘A’,’B’,’C’})
icons1=findobj(icons,’type’,’patch’);
set(icons1,’MarkerSize’,15,’Linewidth’,1.5);
Anyone know the workaround of this? many thanks!Hi,
I’m making a plot containing a few subplots using the function tiledlayout, and I created a global legend using the code
leg = legend({‘A’,’B’,’C’})
leg.Layout.Tile = ‘North’
However with this I cann’t use the previous method to change the marker size in the legend, because it requirs two outputs from the legend, and it will override the previous code.
[~,icons] = legend({‘A’,’B’,’C’})
icons1=findobj(icons,’type’,’patch’);
set(icons1,’MarkerSize’,15,’Linewidth’,1.5);
Anyone know the workaround of this? many thanks! Hi,
I’m making a plot containing a few subplots using the function tiledlayout, and I created a global legend using the code
leg = legend({‘A’,’B’,’C’})
leg.Layout.Tile = ‘North’
However with this I cann’t use the previous method to change the marker size in the legend, because it requirs two outputs from the legend, and it will override the previous code.
[~,icons] = legend({‘A’,’B’,’C’})
icons1=findobj(icons,’type’,’patch’);
set(icons1,’MarkerSize’,15,’Linewidth’,1.5);
Anyone know the workaround of this? many thanks! tiledlayout, makersize, global legend MATLAB Answers — New Questions
Computing gradient of mean curvature on a mesh using gp toolbox, unexpected error. What am I missing?
I am trying to compute this quantity here H grad(H) where H is the mean curvture
The code breaks at the last line because there is a dimension mismatch between H and grad(H). size(grad(H))= [960 3] and size(V)=[162 3] and size(mean_curvture)=[162 3]. Why is the grad(H) has that dimension? where is the mistake?
% Load a mesh
[V, F] = load_mesh(‘sphere.off’);
% Compute Mean Curvature and Normal Vector
% 2. Compute Cotangent Laplacian (L) and Mass Matrix (M)
L = cotmatrix(V, F);
M = massmatrix(V, F, ‘barycentric’);
% 3. Compute Mean Curvature Vector (H)
H = -inv(M) * (L * V);
% 4. Compute the Magnitude of Mean Curvature (mean curvature at each vertex)
mean_curvature = sqrt(sum(H.^2, 2));
% Compute the Normal Vector
normals = per_vertex_normals(V, F);
% Compute Gaussian Curvature
gaussian_curvature = discrete_gaussian_curvature(V,F);
% Compute Laplacian of Mean Curvature
laplacian_H = L * mean_curvature;
% Compute the Gradient of Mean Curvature
% Use gptoolbox’s gradient operator for scalar fields
grad_H = grad(V, F) * mean_curvature;
% Compute the new term: newthing
%H_squared = mean_curvature .^ 2;
%newthing = laplacian_H + ((H_squared – 2 * gaussian_curvature) .* mean_curvature) .* normals + mean_curvature .* grad_H;
% Compute the new term: newthing
H_squared = mean_curvature .^ 2;
newthing = laplacian_H + ((H_squared – 2 * gaussian_curvature) .* mean_curvature) .* normals + mean_curvature .* grad_H;
% Define small arc equation
h = 0.1; % Small parameter h
vertex = V; % V contains the vertices
% Compute the small arc
f_h = vertex + (mean_curvature .* normals) * h + newthing * (h^2 / 2);
% Visualization of small arc
figure;
trisurf(F, V(:,1), V(:,2), V(:,3), ‘FaceColor’, ‘cyan’, ‘EdgeColor’, ‘none’);
hold on;
plot3(f_h(:,1), f_h(:,2), f_h(:,3), ‘r.’, ‘MarkerSize’, 10);
axis equal;
title(‘Small Arc Visualization’);
xlabel(‘X’);
ylabel(‘Y’);
zlabel(‘Z’);
the grad(H) script
% Step 1: Load a Mesh
[V, F] = load_mesh(‘sphere.off’);
% Step 2: Compute Laplace-Beltrami Operator
L = cotmatrix(V, F); % cotangent Laplace-Beltrami operator
% Step 3: Compute the Mean Curvature Vector (H)
H = -L * V; % Mean curvature normal vector
% Step 4: Compute the Mean Curvature Magnitude
mean_curvature = sqrt(sum(H.^2, 2));
% Step 5: Compute the Gradient of Mean Curvature
% Use gptoolbox’s gradient operator for scalar fields
grad_H = grad(V, F) * mean_curvature;
% Step 6: Visualization or Further Processing
figure;
trisurf(F, V(:,1), V(:,2), V(:,3), mean_curvature, ‘EdgeColor’, ‘none’);
axis equal;
lighting gouraud;
camlight;
colorbar;
title(‘Mean Curvature Gradient’);
xlabel(‘X’);
ylabel(‘Y’);
zlabel(‘Z’);
grad(V, F) from gp toolbox
function [G] = grad(V,F)
% GRAD Compute the numerical gradient operator for triangle or tet meshes
%
% G = grad(V,F)
%
% Inputs:
% V #vertices by dim list of mesh vertex positions
% F #faces by simplex-size list of mesh face indices
% Outputs:
% G #faces*dim by #V Gradient operator
%
% Example:
% L = cotmatrix(V,F);
% G = grad(V,F);
% dblA = doublearea(V,F);
% GMG = -G’*repdiag(diag(sparse(dblA)/2),size(V,2))*G;
%
% % Columns of W are scalar fields
% G = grad(V,F);
% % Compute gradient magnitude for each column in W
% GM = squeeze(sqrt(sum(reshape(G*W,size(F,1),size(V,2),size(W,2)).^2,2)));
%
dim = size(V,2);
ss = size(F,2);
switch ss
case 2
% Edge lengths
len = normrow(V(F(:,2),:)-V(F(:,1),:));
% Gradient is just staggered grid finite difference
G = sparse(repmat(1:size(F,1),2,1)’,F,[1 -1]./len, size(F,1),size(V,1));
case 3
% append with 0s for convenience
if size(V,2) == 2
V = [V zeros(size(V,1),1)];
end
% Gradient of a scalar function defined on piecewise linear elements (mesh)
% is constant on each triangle i,j,k:
% grad(Xijk) = (Xj-Xi) * (Vi – Vk)^R90 / 2A + (Xk-Xi) * (Vj – Vi)^R90 / 2A
% grad(Xijk) = Xj * (Vi – Vk)^R90 / 2A + Xk * (Vj – Vi)^R90 / 2A +
% -Xi * (Vi – Vk)^R90 / 2A – Xi * (Vj – Vi)^R90 / 2A
% where Xi is the scalar value at vertex i, Vi is the 3D position of vertex
% i, and A is the area of triangle (i,j,k). ^R90 represent a rotation of
% 90 degrees
%
% renaming indices of vertices of triangles for convenience
i1 = F(:,1); i2 = F(:,2); i3 = F(:,3);
% #F x 3 matrices of triangle edge vectors, named after opposite vertices
v32 = V(i3,:) – V(i2,:); v13 = V(i1,:) – V(i3,:); v21 = V(i2,:) – V(i1,:);
% area of parallelogram is twice area of triangle
% area of parallelogram is || v1 x v2 ||
n = cross(v32,v13,2);
% This does correct l2 norm of rows, so that it contains #F list of twice
% triangle areas
dblA = normrow(n);
% now normalize normals to get unit normals
u = normalizerow(n);
% rotate each vector 90 degrees around normal
%eperp21 = bsxfun(@times,normalizerow(cross(u,v21)),normrow(v21)./dblA);
%eperp13 = bsxfun(@times,normalizerow(cross(u,v13)),normrow(v13)./dblA);
eperp21 = bsxfun(@times,cross(u,v21),1./dblA);
eperp13 = bsxfun(@times,cross(u,v13),1./dblA);
%g = …
% ( …
% repmat(X(F(:,2)) – X(F(:,1)),1,3).*eperp13 + …
% repmat(X(F(:,3)) – X(F(:,1)),1,3).*eperp21 …
% );
GI = …
[0*size(F,1)+repmat(1:size(F,1),1,4) …
1*size(F,1)+repmat(1:size(F,1),1,4) …
2*size(F,1)+repmat(1:size(F,1),1,4)]’;
GJ = repmat([F(:,2);F(:,1);F(:,3);F(:,1)],3,1);
GV = [eperp13(:,1);-eperp13(:,1);eperp21(:,1);-eperp21(:,1); …
eperp13(:,2);-eperp13(:,2);eperp21(:,2);-eperp21(:,2); …
eperp13(:,3);-eperp13(:,3);eperp21(:,3);-eperp21(:,3)];
G = sparse(GI,GJ,GV, 3*size(F,1), size(V,1));
%% Alternatively
%%
%% f(x) is piecewise-linear function:
%%
%% f(x) = ∑ φi(x) fi, f(x ∈ T) = φi(x) fi + φj(x) fj + φk(x) fk
%% ∇f(x) = … = ∇φi(x) fi + ∇φj(x) fj + ∇φk(x) fk
%% = ∇φi fi + ∇φj fj + ∇φk) fk
%%
%% ∇φi = 1/hjk ((Vj-Vk)/||Vj-Vk||)^perp =
%% = ||Vj-Vk|| /(2 Aijk) * ((Vj-Vk)/||Vj-Vk||)^perp
%% = 1/(2 Aijk) * (Vj-Vk)^perp
%%
%m = size(F,1);
%eperp32 = bsxfun(@times,cross(u,v32),1./dblA);
%G = sparse( …
% [0*m + repmat(1:m,1,3) …
% 1*m + repmat(1:m,1,3) …
% 2*m + repmat(1:m,1,3)]’, …
% repmat([F(:,1);F(:,2);F(:,3)],3,1), …
% [eperp32(:,1);eperp13(:,1);eperp21(:,1); …
% eperp32(:,2);eperp13(:,2);eperp21(:,2); …
% eperp32(:,3);eperp13(:,3);eperp21(:,3)], …
% 3*m,size(V,1));
if dim == 2
G = G(1:(size(F,1)*dim),:);
end
% Should be the same as:
% g = …
% bsxfun(@times,X(F(:,1)),cross(u,v32)) + …
% bsxfun(@times,X(F(:,2)),cross(u,v13)) + …
% bsxfun(@times,X(F(:,3)),cross(u,v21));
% g = bsxfun(@rdivide,g,dblA);
case 4
% really dealing with tets
T = F;
% number of dimensions
assert(dim == 3);
% number of vertices
n = size(V,1);
% number of elements
m = size(T,1);
% simplex size
assert(size(T,2) == 4);
if m == 1 && ~isnumeric(V)
simple_volume = @(ad,r) -sum(ad.*r,2)./6;
simple_volume = @(ad,bd,cd) simple_volume(ad, …
[bd(:,2).*cd(:,3)-bd(:,3).*cd(:,2), …
bd(:,3).*cd(:,1)-bd(:,1).*cd(:,3), …
bd(:,1).*cd(:,2)-bd(:,2).*cd(:,1)]);
P = sym(‘P’,[1 3]);
V1 = V(T(:,1),:);
V2 = V(T(:,2),:);
V3 = V(T(:,3),:);
V4 = V(T(:,4),:);
V1P = V1-P;
V2P = V2-P;
V3P = V3-P;
V4P = V4-P;
A1 = simple_volume(V2P,V4P,V3P);
A2 = simple_volume(V1P,V3P,V4P);
A3 = simple_volume(V1P,V4P,V2P);
A4 = simple_volume(V1P,V2P,V3P);
B = [A1 A2 A3 A4]./(A1+A2+A3+A4);
G = simplify(jacobian(B,P).’);
return
end
% f(x) is piecewise-linear function:
%
% f(x) = ∑ φi(x) fi, f(x ∈ T) = φi(x) fi + φj(x) fj + φk(x) fk + φl(x) fl
% ∇f(x) = … = ∇φi(x) fi + ∇φj(x) fj + ∇φk(x) fk + ∇φl(x) fl
% = ∇φi fi + ∇φj fj + ∇φk fk + ∇φl fl
%
% ∇φi = 1/hjk = Ajkl / 3V * (Facejkl)^perp
% = Ajkl / 3V * (Vj-Vk)x(Vl-Vk)
% = Ajkl / 3V * Njkl / ||Njkl||
%
% get all faces
F = [ …
T(:,1) T(:,2) T(:,3); …
T(:,1) T(:,3) T(:,4); …
T(:,1) T(:,4) T(:,2); …
T(:,2) T(:,4) T(:,3)];
% compute areas of each face
A = doublearea(V,F)/2;
N = normalizerow(normals(V,F));
% compute volume of each tet
vol = volume(V,T);
GI = …
[0*m + repmat(1:m,1,4) …
1*m + repmat(1:m,1,4) …
2*m + repmat(1:m,1,4)];
GJ = repmat([T(:,4);T(:,2);T(:,3);T(:,1)],3,1);
GV = repmat(A./(3*repmat(vol,4,1)),3,1).*N(:);
G = sparse(GI,GJ,GV, 3*m,n);
end
end
the sphere.off file (mesh data)I am trying to compute this quantity here H grad(H) where H is the mean curvture
The code breaks at the last line because there is a dimension mismatch between H and grad(H). size(grad(H))= [960 3] and size(V)=[162 3] and size(mean_curvture)=[162 3]. Why is the grad(H) has that dimension? where is the mistake?
% Load a mesh
[V, F] = load_mesh(‘sphere.off’);
% Compute Mean Curvature and Normal Vector
% 2. Compute Cotangent Laplacian (L) and Mass Matrix (M)
L = cotmatrix(V, F);
M = massmatrix(V, F, ‘barycentric’);
% 3. Compute Mean Curvature Vector (H)
H = -inv(M) * (L * V);
% 4. Compute the Magnitude of Mean Curvature (mean curvature at each vertex)
mean_curvature = sqrt(sum(H.^2, 2));
% Compute the Normal Vector
normals = per_vertex_normals(V, F);
% Compute Gaussian Curvature
gaussian_curvature = discrete_gaussian_curvature(V,F);
% Compute Laplacian of Mean Curvature
laplacian_H = L * mean_curvature;
% Compute the Gradient of Mean Curvature
% Use gptoolbox’s gradient operator for scalar fields
grad_H = grad(V, F) * mean_curvature;
% Compute the new term: newthing
%H_squared = mean_curvature .^ 2;
%newthing = laplacian_H + ((H_squared – 2 * gaussian_curvature) .* mean_curvature) .* normals + mean_curvature .* grad_H;
% Compute the new term: newthing
H_squared = mean_curvature .^ 2;
newthing = laplacian_H + ((H_squared – 2 * gaussian_curvature) .* mean_curvature) .* normals + mean_curvature .* grad_H;
% Define small arc equation
h = 0.1; % Small parameter h
vertex = V; % V contains the vertices
% Compute the small arc
f_h = vertex + (mean_curvature .* normals) * h + newthing * (h^2 / 2);
% Visualization of small arc
figure;
trisurf(F, V(:,1), V(:,2), V(:,3), ‘FaceColor’, ‘cyan’, ‘EdgeColor’, ‘none’);
hold on;
plot3(f_h(:,1), f_h(:,2), f_h(:,3), ‘r.’, ‘MarkerSize’, 10);
axis equal;
title(‘Small Arc Visualization’);
xlabel(‘X’);
ylabel(‘Y’);
zlabel(‘Z’);
the grad(H) script
% Step 1: Load a Mesh
[V, F] = load_mesh(‘sphere.off’);
% Step 2: Compute Laplace-Beltrami Operator
L = cotmatrix(V, F); % cotangent Laplace-Beltrami operator
% Step 3: Compute the Mean Curvature Vector (H)
H = -L * V; % Mean curvature normal vector
% Step 4: Compute the Mean Curvature Magnitude
mean_curvature = sqrt(sum(H.^2, 2));
% Step 5: Compute the Gradient of Mean Curvature
% Use gptoolbox’s gradient operator for scalar fields
grad_H = grad(V, F) * mean_curvature;
% Step 6: Visualization or Further Processing
figure;
trisurf(F, V(:,1), V(:,2), V(:,3), mean_curvature, ‘EdgeColor’, ‘none’);
axis equal;
lighting gouraud;
camlight;
colorbar;
title(‘Mean Curvature Gradient’);
xlabel(‘X’);
ylabel(‘Y’);
zlabel(‘Z’);
grad(V, F) from gp toolbox
function [G] = grad(V,F)
% GRAD Compute the numerical gradient operator for triangle or tet meshes
%
% G = grad(V,F)
%
% Inputs:
% V #vertices by dim list of mesh vertex positions
% F #faces by simplex-size list of mesh face indices
% Outputs:
% G #faces*dim by #V Gradient operator
%
% Example:
% L = cotmatrix(V,F);
% G = grad(V,F);
% dblA = doublearea(V,F);
% GMG = -G’*repdiag(diag(sparse(dblA)/2),size(V,2))*G;
%
% % Columns of W are scalar fields
% G = grad(V,F);
% % Compute gradient magnitude for each column in W
% GM = squeeze(sqrt(sum(reshape(G*W,size(F,1),size(V,2),size(W,2)).^2,2)));
%
dim = size(V,2);
ss = size(F,2);
switch ss
case 2
% Edge lengths
len = normrow(V(F(:,2),:)-V(F(:,1),:));
% Gradient is just staggered grid finite difference
G = sparse(repmat(1:size(F,1),2,1)’,F,[1 -1]./len, size(F,1),size(V,1));
case 3
% append with 0s for convenience
if size(V,2) == 2
V = [V zeros(size(V,1),1)];
end
% Gradient of a scalar function defined on piecewise linear elements (mesh)
% is constant on each triangle i,j,k:
% grad(Xijk) = (Xj-Xi) * (Vi – Vk)^R90 / 2A + (Xk-Xi) * (Vj – Vi)^R90 / 2A
% grad(Xijk) = Xj * (Vi – Vk)^R90 / 2A + Xk * (Vj – Vi)^R90 / 2A +
% -Xi * (Vi – Vk)^R90 / 2A – Xi * (Vj – Vi)^R90 / 2A
% where Xi is the scalar value at vertex i, Vi is the 3D position of vertex
% i, and A is the area of triangle (i,j,k). ^R90 represent a rotation of
% 90 degrees
%
% renaming indices of vertices of triangles for convenience
i1 = F(:,1); i2 = F(:,2); i3 = F(:,3);
% #F x 3 matrices of triangle edge vectors, named after opposite vertices
v32 = V(i3,:) – V(i2,:); v13 = V(i1,:) – V(i3,:); v21 = V(i2,:) – V(i1,:);
% area of parallelogram is twice area of triangle
% area of parallelogram is || v1 x v2 ||
n = cross(v32,v13,2);
% This does correct l2 norm of rows, so that it contains #F list of twice
% triangle areas
dblA = normrow(n);
% now normalize normals to get unit normals
u = normalizerow(n);
% rotate each vector 90 degrees around normal
%eperp21 = bsxfun(@times,normalizerow(cross(u,v21)),normrow(v21)./dblA);
%eperp13 = bsxfun(@times,normalizerow(cross(u,v13)),normrow(v13)./dblA);
eperp21 = bsxfun(@times,cross(u,v21),1./dblA);
eperp13 = bsxfun(@times,cross(u,v13),1./dblA);
%g = …
% ( …
% repmat(X(F(:,2)) – X(F(:,1)),1,3).*eperp13 + …
% repmat(X(F(:,3)) – X(F(:,1)),1,3).*eperp21 …
% );
GI = …
[0*size(F,1)+repmat(1:size(F,1),1,4) …
1*size(F,1)+repmat(1:size(F,1),1,4) …
2*size(F,1)+repmat(1:size(F,1),1,4)]’;
GJ = repmat([F(:,2);F(:,1);F(:,3);F(:,1)],3,1);
GV = [eperp13(:,1);-eperp13(:,1);eperp21(:,1);-eperp21(:,1); …
eperp13(:,2);-eperp13(:,2);eperp21(:,2);-eperp21(:,2); …
eperp13(:,3);-eperp13(:,3);eperp21(:,3);-eperp21(:,3)];
G = sparse(GI,GJ,GV, 3*size(F,1), size(V,1));
%% Alternatively
%%
%% f(x) is piecewise-linear function:
%%
%% f(x) = ∑ φi(x) fi, f(x ∈ T) = φi(x) fi + φj(x) fj + φk(x) fk
%% ∇f(x) = … = ∇φi(x) fi + ∇φj(x) fj + ∇φk(x) fk
%% = ∇φi fi + ∇φj fj + ∇φk) fk
%%
%% ∇φi = 1/hjk ((Vj-Vk)/||Vj-Vk||)^perp =
%% = ||Vj-Vk|| /(2 Aijk) * ((Vj-Vk)/||Vj-Vk||)^perp
%% = 1/(2 Aijk) * (Vj-Vk)^perp
%%
%m = size(F,1);
%eperp32 = bsxfun(@times,cross(u,v32),1./dblA);
%G = sparse( …
% [0*m + repmat(1:m,1,3) …
% 1*m + repmat(1:m,1,3) …
% 2*m + repmat(1:m,1,3)]’, …
% repmat([F(:,1);F(:,2);F(:,3)],3,1), …
% [eperp32(:,1);eperp13(:,1);eperp21(:,1); …
% eperp32(:,2);eperp13(:,2);eperp21(:,2); …
% eperp32(:,3);eperp13(:,3);eperp21(:,3)], …
% 3*m,size(V,1));
if dim == 2
G = G(1:(size(F,1)*dim),:);
end
% Should be the same as:
% g = …
% bsxfun(@times,X(F(:,1)),cross(u,v32)) + …
% bsxfun(@times,X(F(:,2)),cross(u,v13)) + …
% bsxfun(@times,X(F(:,3)),cross(u,v21));
% g = bsxfun(@rdivide,g,dblA);
case 4
% really dealing with tets
T = F;
% number of dimensions
assert(dim == 3);
% number of vertices
n = size(V,1);
% number of elements
m = size(T,1);
% simplex size
assert(size(T,2) == 4);
if m == 1 && ~isnumeric(V)
simple_volume = @(ad,r) -sum(ad.*r,2)./6;
simple_volume = @(ad,bd,cd) simple_volume(ad, …
[bd(:,2).*cd(:,3)-bd(:,3).*cd(:,2), …
bd(:,3).*cd(:,1)-bd(:,1).*cd(:,3), …
bd(:,1).*cd(:,2)-bd(:,2).*cd(:,1)]);
P = sym(‘P’,[1 3]);
V1 = V(T(:,1),:);
V2 = V(T(:,2),:);
V3 = V(T(:,3),:);
V4 = V(T(:,4),:);
V1P = V1-P;
V2P = V2-P;
V3P = V3-P;
V4P = V4-P;
A1 = simple_volume(V2P,V4P,V3P);
A2 = simple_volume(V1P,V3P,V4P);
A3 = simple_volume(V1P,V4P,V2P);
A4 = simple_volume(V1P,V2P,V3P);
B = [A1 A2 A3 A4]./(A1+A2+A3+A4);
G = simplify(jacobian(B,P).’);
return
end
% f(x) is piecewise-linear function:
%
% f(x) = ∑ φi(x) fi, f(x ∈ T) = φi(x) fi + φj(x) fj + φk(x) fk + φl(x) fl
% ∇f(x) = … = ∇φi(x) fi + ∇φj(x) fj + ∇φk(x) fk + ∇φl(x) fl
% = ∇φi fi + ∇φj fj + ∇φk fk + ∇φl fl
%
% ∇φi = 1/hjk = Ajkl / 3V * (Facejkl)^perp
% = Ajkl / 3V * (Vj-Vk)x(Vl-Vk)
% = Ajkl / 3V * Njkl / ||Njkl||
%
% get all faces
F = [ …
T(:,1) T(:,2) T(:,3); …
T(:,1) T(:,3) T(:,4); …
T(:,1) T(:,4) T(:,2); …
T(:,2) T(:,4) T(:,3)];
% compute areas of each face
A = doublearea(V,F)/2;
N = normalizerow(normals(V,F));
% compute volume of each tet
vol = volume(V,T);
GI = …
[0*m + repmat(1:m,1,4) …
1*m + repmat(1:m,1,4) …
2*m + repmat(1:m,1,4)];
GJ = repmat([T(:,4);T(:,2);T(:,3);T(:,1)],3,1);
GV = repmat(A./(3*repmat(vol,4,1)),3,1).*N(:);
G = sparse(GI,GJ,GV, 3*m,n);
end
end
the sphere.off file (mesh data) I am trying to compute this quantity here H grad(H) where H is the mean curvture
The code breaks at the last line because there is a dimension mismatch between H and grad(H). size(grad(H))= [960 3] and size(V)=[162 3] and size(mean_curvture)=[162 3]. Why is the grad(H) has that dimension? where is the mistake?
% Load a mesh
[V, F] = load_mesh(‘sphere.off’);
% Compute Mean Curvature and Normal Vector
% 2. Compute Cotangent Laplacian (L) and Mass Matrix (M)
L = cotmatrix(V, F);
M = massmatrix(V, F, ‘barycentric’);
% 3. Compute Mean Curvature Vector (H)
H = -inv(M) * (L * V);
% 4. Compute the Magnitude of Mean Curvature (mean curvature at each vertex)
mean_curvature = sqrt(sum(H.^2, 2));
% Compute the Normal Vector
normals = per_vertex_normals(V, F);
% Compute Gaussian Curvature
gaussian_curvature = discrete_gaussian_curvature(V,F);
% Compute Laplacian of Mean Curvature
laplacian_H = L * mean_curvature;
% Compute the Gradient of Mean Curvature
% Use gptoolbox’s gradient operator for scalar fields
grad_H = grad(V, F) * mean_curvature;
% Compute the new term: newthing
%H_squared = mean_curvature .^ 2;
%newthing = laplacian_H + ((H_squared – 2 * gaussian_curvature) .* mean_curvature) .* normals + mean_curvature .* grad_H;
% Compute the new term: newthing
H_squared = mean_curvature .^ 2;
newthing = laplacian_H + ((H_squared – 2 * gaussian_curvature) .* mean_curvature) .* normals + mean_curvature .* grad_H;
% Define small arc equation
h = 0.1; % Small parameter h
vertex = V; % V contains the vertices
% Compute the small arc
f_h = vertex + (mean_curvature .* normals) * h + newthing * (h^2 / 2);
% Visualization of small arc
figure;
trisurf(F, V(:,1), V(:,2), V(:,3), ‘FaceColor’, ‘cyan’, ‘EdgeColor’, ‘none’);
hold on;
plot3(f_h(:,1), f_h(:,2), f_h(:,3), ‘r.’, ‘MarkerSize’, 10);
axis equal;
title(‘Small Arc Visualization’);
xlabel(‘X’);
ylabel(‘Y’);
zlabel(‘Z’);
the grad(H) script
% Step 1: Load a Mesh
[V, F] = load_mesh(‘sphere.off’);
% Step 2: Compute Laplace-Beltrami Operator
L = cotmatrix(V, F); % cotangent Laplace-Beltrami operator
% Step 3: Compute the Mean Curvature Vector (H)
H = -L * V; % Mean curvature normal vector
% Step 4: Compute the Mean Curvature Magnitude
mean_curvature = sqrt(sum(H.^2, 2));
% Step 5: Compute the Gradient of Mean Curvature
% Use gptoolbox’s gradient operator for scalar fields
grad_H = grad(V, F) * mean_curvature;
% Step 6: Visualization or Further Processing
figure;
trisurf(F, V(:,1), V(:,2), V(:,3), mean_curvature, ‘EdgeColor’, ‘none’);
axis equal;
lighting gouraud;
camlight;
colorbar;
title(‘Mean Curvature Gradient’);
xlabel(‘X’);
ylabel(‘Y’);
zlabel(‘Z’);
grad(V, F) from gp toolbox
function [G] = grad(V,F)
% GRAD Compute the numerical gradient operator for triangle or tet meshes
%
% G = grad(V,F)
%
% Inputs:
% V #vertices by dim list of mesh vertex positions
% F #faces by simplex-size list of mesh face indices
% Outputs:
% G #faces*dim by #V Gradient operator
%
% Example:
% L = cotmatrix(V,F);
% G = grad(V,F);
% dblA = doublearea(V,F);
% GMG = -G’*repdiag(diag(sparse(dblA)/2),size(V,2))*G;
%
% % Columns of W are scalar fields
% G = grad(V,F);
% % Compute gradient magnitude for each column in W
% GM = squeeze(sqrt(sum(reshape(G*W,size(F,1),size(V,2),size(W,2)).^2,2)));
%
dim = size(V,2);
ss = size(F,2);
switch ss
case 2
% Edge lengths
len = normrow(V(F(:,2),:)-V(F(:,1),:));
% Gradient is just staggered grid finite difference
G = sparse(repmat(1:size(F,1),2,1)’,F,[1 -1]./len, size(F,1),size(V,1));
case 3
% append with 0s for convenience
if size(V,2) == 2
V = [V zeros(size(V,1),1)];
end
% Gradient of a scalar function defined on piecewise linear elements (mesh)
% is constant on each triangle i,j,k:
% grad(Xijk) = (Xj-Xi) * (Vi – Vk)^R90 / 2A + (Xk-Xi) * (Vj – Vi)^R90 / 2A
% grad(Xijk) = Xj * (Vi – Vk)^R90 / 2A + Xk * (Vj – Vi)^R90 / 2A +
% -Xi * (Vi – Vk)^R90 / 2A – Xi * (Vj – Vi)^R90 / 2A
% where Xi is the scalar value at vertex i, Vi is the 3D position of vertex
% i, and A is the area of triangle (i,j,k). ^R90 represent a rotation of
% 90 degrees
%
% renaming indices of vertices of triangles for convenience
i1 = F(:,1); i2 = F(:,2); i3 = F(:,3);
% #F x 3 matrices of triangle edge vectors, named after opposite vertices
v32 = V(i3,:) – V(i2,:); v13 = V(i1,:) – V(i3,:); v21 = V(i2,:) – V(i1,:);
% area of parallelogram is twice area of triangle
% area of parallelogram is || v1 x v2 ||
n = cross(v32,v13,2);
% This does correct l2 norm of rows, so that it contains #F list of twice
% triangle areas
dblA = normrow(n);
% now normalize normals to get unit normals
u = normalizerow(n);
% rotate each vector 90 degrees around normal
%eperp21 = bsxfun(@times,normalizerow(cross(u,v21)),normrow(v21)./dblA);
%eperp13 = bsxfun(@times,normalizerow(cross(u,v13)),normrow(v13)./dblA);
eperp21 = bsxfun(@times,cross(u,v21),1./dblA);
eperp13 = bsxfun(@times,cross(u,v13),1./dblA);
%g = …
% ( …
% repmat(X(F(:,2)) – X(F(:,1)),1,3).*eperp13 + …
% repmat(X(F(:,3)) – X(F(:,1)),1,3).*eperp21 …
% );
GI = …
[0*size(F,1)+repmat(1:size(F,1),1,4) …
1*size(F,1)+repmat(1:size(F,1),1,4) …
2*size(F,1)+repmat(1:size(F,1),1,4)]’;
GJ = repmat([F(:,2);F(:,1);F(:,3);F(:,1)],3,1);
GV = [eperp13(:,1);-eperp13(:,1);eperp21(:,1);-eperp21(:,1); …
eperp13(:,2);-eperp13(:,2);eperp21(:,2);-eperp21(:,2); …
eperp13(:,3);-eperp13(:,3);eperp21(:,3);-eperp21(:,3)];
G = sparse(GI,GJ,GV, 3*size(F,1), size(V,1));
%% Alternatively
%%
%% f(x) is piecewise-linear function:
%%
%% f(x) = ∑ φi(x) fi, f(x ∈ T) = φi(x) fi + φj(x) fj + φk(x) fk
%% ∇f(x) = … = ∇φi(x) fi + ∇φj(x) fj + ∇φk(x) fk
%% = ∇φi fi + ∇φj fj + ∇φk) fk
%%
%% ∇φi = 1/hjk ((Vj-Vk)/||Vj-Vk||)^perp =
%% = ||Vj-Vk|| /(2 Aijk) * ((Vj-Vk)/||Vj-Vk||)^perp
%% = 1/(2 Aijk) * (Vj-Vk)^perp
%%
%m = size(F,1);
%eperp32 = bsxfun(@times,cross(u,v32),1./dblA);
%G = sparse( …
% [0*m + repmat(1:m,1,3) …
% 1*m + repmat(1:m,1,3) …
% 2*m + repmat(1:m,1,3)]’, …
% repmat([F(:,1);F(:,2);F(:,3)],3,1), …
% [eperp32(:,1);eperp13(:,1);eperp21(:,1); …
% eperp32(:,2);eperp13(:,2);eperp21(:,2); …
% eperp32(:,3);eperp13(:,3);eperp21(:,3)], …
% 3*m,size(V,1));
if dim == 2
G = G(1:(size(F,1)*dim),:);
end
% Should be the same as:
% g = …
% bsxfun(@times,X(F(:,1)),cross(u,v32)) + …
% bsxfun(@times,X(F(:,2)),cross(u,v13)) + …
% bsxfun(@times,X(F(:,3)),cross(u,v21));
% g = bsxfun(@rdivide,g,dblA);
case 4
% really dealing with tets
T = F;
% number of dimensions
assert(dim == 3);
% number of vertices
n = size(V,1);
% number of elements
m = size(T,1);
% simplex size
assert(size(T,2) == 4);
if m == 1 && ~isnumeric(V)
simple_volume = @(ad,r) -sum(ad.*r,2)./6;
simple_volume = @(ad,bd,cd) simple_volume(ad, …
[bd(:,2).*cd(:,3)-bd(:,3).*cd(:,2), …
bd(:,3).*cd(:,1)-bd(:,1).*cd(:,3), …
bd(:,1).*cd(:,2)-bd(:,2).*cd(:,1)]);
P = sym(‘P’,[1 3]);
V1 = V(T(:,1),:);
V2 = V(T(:,2),:);
V3 = V(T(:,3),:);
V4 = V(T(:,4),:);
V1P = V1-P;
V2P = V2-P;
V3P = V3-P;
V4P = V4-P;
A1 = simple_volume(V2P,V4P,V3P);
A2 = simple_volume(V1P,V3P,V4P);
A3 = simple_volume(V1P,V4P,V2P);
A4 = simple_volume(V1P,V2P,V3P);
B = [A1 A2 A3 A4]./(A1+A2+A3+A4);
G = simplify(jacobian(B,P).’);
return
end
% f(x) is piecewise-linear function:
%
% f(x) = ∑ φi(x) fi, f(x ∈ T) = φi(x) fi + φj(x) fj + φk(x) fk + φl(x) fl
% ∇f(x) = … = ∇φi(x) fi + ∇φj(x) fj + ∇φk(x) fk + ∇φl(x) fl
% = ∇φi fi + ∇φj fj + ∇φk fk + ∇φl fl
%
% ∇φi = 1/hjk = Ajkl / 3V * (Facejkl)^perp
% = Ajkl / 3V * (Vj-Vk)x(Vl-Vk)
% = Ajkl / 3V * Njkl / ||Njkl||
%
% get all faces
F = [ …
T(:,1) T(:,2) T(:,3); …
T(:,1) T(:,3) T(:,4); …
T(:,1) T(:,4) T(:,2); …
T(:,2) T(:,4) T(:,3)];
% compute areas of each face
A = doublearea(V,F)/2;
N = normalizerow(normals(V,F));
% compute volume of each tet
vol = volume(V,T);
GI = …
[0*m + repmat(1:m,1,4) …
1*m + repmat(1:m,1,4) …
2*m + repmat(1:m,1,4)];
GJ = repmat([T(:,4);T(:,2);T(:,3);T(:,1)],3,1);
GV = repmat(A./(3*repmat(vol,4,1)),3,1).*N(:);
G = sparse(GI,GJ,GV, 3*m,n);
end
end
the sphere.off file (mesh data) image processing, image segmentation, digital image processing, geometry processing, toolbox, matrix MATLAB Answers — New Questions
How to compute the Shapley value of BP neural network
Hello, I trained a BP nerual network using newff function, and wanted to obtain its Shapley value. But error occurs like this:
How can I deal with it?Hello, I trained a BP nerual network using newff function, and wanted to obtain its Shapley value. But error occurs like this:
How can I deal with it? Hello, I trained a BP nerual network using newff function, and wanted to obtain its Shapley value. But error occurs like this:
How can I deal with it? interpret machine learning models MATLAB Answers — New Questions
Find what toolboxes a script uses
Hello to all,
We need to buy a Matlab license for a project and we already have a working collection of scripts. However, there are so many functions used that it is very difficult to find out what toolboxes we need to buy (it will take a lot of time to check each function’s origin). Is there a tool created by Mathworks which will allow us to find out what toolboxes or Matlab packages are used for a given script?
Best regards,
JeanHello to all,
We need to buy a Matlab license for a project and we already have a working collection of scripts. However, there are so many functions used that it is very difficult to find out what toolboxes we need to buy (it will take a lot of time to check each function’s origin). Is there a tool created by Mathworks which will allow us to find out what toolboxes or Matlab packages are used for a given script?
Best regards,
Jean Hello to all,
We need to buy a Matlab license for a project and we already have a working collection of scripts. However, there are so many functions used that it is very difficult to find out what toolboxes we need to buy (it will take a lot of time to check each function’s origin). Is there a tool created by Mathworks which will allow us to find out what toolboxes or Matlab packages are used for a given script?
Best regards,
Jean toolbox, package, matlab, script, functions MATLAB Answers — New Questions
Find which toolboxes are required
I need to figure out what toolboxes are required for a particular script on Matlab 2013b. I found the matlab.codetools.requiredFilesAndProducts function, but that’s apparently newer than 2013b. I searched further and found ‘depfun’, but when I ran trace = depfun(‘myScript.m’), I got this error:
Error using newdepfun
The specified superclass ‘mlreportgen.dom.DocumentPart’ contains a parse error or cannot be found on MATLAB’s
search path, possibly shadowed by another file with the same name.
Error in depfun/analyze_trace_all (line 485)
[arglist{:}] = newdepfun(trace_list,ndf_options{:} );
Error in depfun (line 312)
analyze_trace_all; % calls newdepfun
What else can I try?I need to figure out what toolboxes are required for a particular script on Matlab 2013b. I found the matlab.codetools.requiredFilesAndProducts function, but that’s apparently newer than 2013b. I searched further and found ‘depfun’, but when I ran trace = depfun(‘myScript.m’), I got this error:
Error using newdepfun
The specified superclass ‘mlreportgen.dom.DocumentPart’ contains a parse error or cannot be found on MATLAB’s
search path, possibly shadowed by another file with the same name.
Error in depfun/analyze_trace_all (line 485)
[arglist{:}] = newdepfun(trace_list,ndf_options{:} );
Error in depfun (line 312)
analyze_trace_all; % calls newdepfun
What else can I try? I need to figure out what toolboxes are required for a particular script on Matlab 2013b. I found the matlab.codetools.requiredFilesAndProducts function, but that’s apparently newer than 2013b. I searched further and found ‘depfun’, but when I ran trace = depfun(‘myScript.m’), I got this error:
Error using newdepfun
The specified superclass ‘mlreportgen.dom.DocumentPart’ contains a parse error or cannot be found on MATLAB’s
search path, possibly shadowed by another file with the same name.
Error in depfun/analyze_trace_all (line 485)
[arglist{:}] = newdepfun(trace_list,ndf_options{:} );
Error in depfun (line 312)
analyze_trace_all; % calls newdepfun
What else can I try? depfun, r2013b, toolbox dependencies, dependency report MATLAB Answers — New Questions
creating a satellite scenario manually vs from a TLE file
Hello,
I’m currently experimenting with the Satellite communication toolbox. I noticed that there seems to be a difference in the output between creating a satellite scenario and populating it using TLE data from a file (so using satellite(sc, tlefile)), versus defining the satellite scenario and adding the satellites’ parameters (which are extracted from the same TLE file using tleread() function) manually, despite having the same initial conditions (startTime, stopTime, and samplingTime)
For instance, with MATLAB’s TLE file ‘leoSatelliteConstellation.tle’, the following output is shown on the SatelliteViewer.
using the manual method based on tleread() and satellite(scenario,semimajoraxis,eccentricity,inclination,RAAN,argofperiapsis,trueanomaly):
and using satellite(scenario,file):
shouldn’t they have the same output?
When using actual TLE data of Iridium satellites, for instance, loading the constellation using the manual method produced an erroneous output!Hello,
I’m currently experimenting with the Satellite communication toolbox. I noticed that there seems to be a difference in the output between creating a satellite scenario and populating it using TLE data from a file (so using satellite(sc, tlefile)), versus defining the satellite scenario and adding the satellites’ parameters (which are extracted from the same TLE file using tleread() function) manually, despite having the same initial conditions (startTime, stopTime, and samplingTime)
For instance, with MATLAB’s TLE file ‘leoSatelliteConstellation.tle’, the following output is shown on the SatelliteViewer.
using the manual method based on tleread() and satellite(scenario,semimajoraxis,eccentricity,inclination,RAAN,argofperiapsis,trueanomaly):
and using satellite(scenario,file):
shouldn’t they have the same output?
When using actual TLE data of Iridium satellites, for instance, loading the constellation using the manual method produced an erroneous output! Hello,
I’m currently experimenting with the Satellite communication toolbox. I noticed that there seems to be a difference in the output between creating a satellite scenario and populating it using TLE data from a file (so using satellite(sc, tlefile)), versus defining the satellite scenario and adding the satellites’ parameters (which are extracted from the same TLE file using tleread() function) manually, despite having the same initial conditions (startTime, stopTime, and samplingTime)
For instance, with MATLAB’s TLE file ‘leoSatelliteConstellation.tle’, the following output is shown on the SatelliteViewer.
using the manual method based on tleread() and satellite(scenario,semimajoraxis,eccentricity,inclination,RAAN,argofperiapsis,trueanomaly):
and using satellite(scenario,file):
shouldn’t they have the same output?
When using actual TLE data of Iridium satellites, for instance, loading the constellation using the manual method produced an erroneous output! satellite, tle data, satellitescenario MATLAB Answers — New Questions
I am trying to run spm12 with matlab 2023b on my macOS but I got this error when I type spm and I have already installed xcode14 from App Store
>> spm
Error using spm_check_installation>check_basic
SPM uses a number of MEX files, which are compiled functions.
These need to be compiled for the various platforms on which SPM
is run. It seems that the compiled files for your computer platform
are missing or not compatible. See
https://en.wikibooks.org/wiki/SPM/Installation_on_64bit_Mac_OS_(Intel)
for information about how to compile MEX files for MACA64
in MATLAB 23.2.0.2391609 (R2023b) Update 2.>> spm
Error using spm_check_installation>check_basic
SPM uses a number of MEX files, which are compiled functions.
These need to be compiled for the various platforms on which SPM
is run. It seems that the compiled files for your computer platform
are missing or not compatible. See
https://en.wikibooks.org/wiki/SPM/Installation_on_64bit_Mac_OS_(Intel)
for information about how to compile MEX files for MACA64
in MATLAB 23.2.0.2391609 (R2023b) Update 2. >> spm
Error using spm_check_installation>check_basic
SPM uses a number of MEX files, which are compiled functions.
These need to be compiled for the various platforms on which SPM
is run. It seems that the compiled files for your computer platform
are missing or not compatible. See
https://en.wikibooks.org/wiki/SPM/Installation_on_64bit_Mac_OS_(Intel)
for information about how to compile MEX files for MACA64
in MATLAB 23.2.0.2391609 (R2023b) Update 2. spm12 MATLAB Answers — New Questions
Optimization Live Editor task Error “Your objective function must return a scalar value”
Hi,I’m trying to maximize a function with genetic algorithm or patternsearch using Optimization Live Editor task. But it confuses me that an Error "Your objective function must return a scalar value" always occurs, and I have alreay checked out the output of my objective function. Can somebody tell me how to fix this problem? Would appreciate any help!
I checked out the the output of my objective function as follows:
input = [0 0.5];
MaxSidelobe = FindBestPlacingGA(input);
TF = isscalar(MaxSidelobe);
disp(TF);
The objective function and other functions needed:
function MaxSidelobe= FindBestPlacingGA(input)
input(1) = deg2rad(input(1));
mic_pos = [0 0.24 0
-0.2078 -0.12 0
0.2078 -0.12 0];
mic_pos = [Array3N(input(1),input(2));mic_pos];
MaxSidelobe= FPSF_Function(mic_pos,500,0:1:80);
end
function mic_pos = Array3N(theta,rho)
theta3N = [theta+pi/2;theta+pi*7/6;theta+pi*11/6];
mic_pos = zeros(3,3);
mic_pos(:,3) = 0;
[mic_pos(:,1),mic_pos(:,2)] = pol2cart(theta3N,rho);
end
function MSL= FPSF_Function(mic_pos,f,El)
Num_mic = size(mic_pos,1);
Az = -180:1: 180;
c = 343;
k0 = [0 0 -1];
numAz = length(Az);
numEl = length(El);
K = zeros(3, numAz, numEl);
for i = 1:numAz
for j = 1:numEl
az_rad = deg2rad(Az(i));
el_rad = deg2rad(El(j));
x = cos(az_rad) * sin(el_rad);
y = sin(az_rad) * sin(el_rad);
z = cos(el_rad);
K(:, i, j) = [x; y; z];
end
end
W = zeros(numAz,numEl);
for p = 1:numAz
for q = 1:numEl
for n = 1:Num_mic
W(p,q) = exp(-1i*dot(K(:,p,q)’-k0,mic_pos(n,:))*2*pi*f/c) + W(p,q);
end
end
end
W = W/Num_mic;
Y = 10*log10((abs(W)).^2);
local_max = imregionalmax(Y);
max_values = Y(local_max);
Mainlobe = max(max_values(:));
sidelobes = max_values(max_values~=Mainlobe);
MSL = Mainlobe – max(sidelobes(:));
endHi,I’m trying to maximize a function with genetic algorithm or patternsearch using Optimization Live Editor task. But it confuses me that an Error "Your objective function must return a scalar value" always occurs, and I have alreay checked out the output of my objective function. Can somebody tell me how to fix this problem? Would appreciate any help!
I checked out the the output of my objective function as follows:
input = [0 0.5];
MaxSidelobe = FindBestPlacingGA(input);
TF = isscalar(MaxSidelobe);
disp(TF);
The objective function and other functions needed:
function MaxSidelobe= FindBestPlacingGA(input)
input(1) = deg2rad(input(1));
mic_pos = [0 0.24 0
-0.2078 -0.12 0
0.2078 -0.12 0];
mic_pos = [Array3N(input(1),input(2));mic_pos];
MaxSidelobe= FPSF_Function(mic_pos,500,0:1:80);
end
function mic_pos = Array3N(theta,rho)
theta3N = [theta+pi/2;theta+pi*7/6;theta+pi*11/6];
mic_pos = zeros(3,3);
mic_pos(:,3) = 0;
[mic_pos(:,1),mic_pos(:,2)] = pol2cart(theta3N,rho);
end
function MSL= FPSF_Function(mic_pos,f,El)
Num_mic = size(mic_pos,1);
Az = -180:1: 180;
c = 343;
k0 = [0 0 -1];
numAz = length(Az);
numEl = length(El);
K = zeros(3, numAz, numEl);
for i = 1:numAz
for j = 1:numEl
az_rad = deg2rad(Az(i));
el_rad = deg2rad(El(j));
x = cos(az_rad) * sin(el_rad);
y = sin(az_rad) * sin(el_rad);
z = cos(el_rad);
K(:, i, j) = [x; y; z];
end
end
W = zeros(numAz,numEl);
for p = 1:numAz
for q = 1:numEl
for n = 1:Num_mic
W(p,q) = exp(-1i*dot(K(:,p,q)’-k0,mic_pos(n,:))*2*pi*f/c) + W(p,q);
end
end
end
W = W/Num_mic;
Y = 10*log10((abs(W)).^2);
local_max = imregionalmax(Y);
max_values = Y(local_max);
Mainlobe = max(max_values(:));
sidelobes = max_values(max_values~=Mainlobe);
MSL = Mainlobe – max(sidelobes(:));
end Hi,I’m trying to maximize a function with genetic algorithm or patternsearch using Optimization Live Editor task. But it confuses me that an Error "Your objective function must return a scalar value" always occurs, and I have alreay checked out the output of my objective function. Can somebody tell me how to fix this problem? Would appreciate any help!
I checked out the the output of my objective function as follows:
input = [0 0.5];
MaxSidelobe = FindBestPlacingGA(input);
TF = isscalar(MaxSidelobe);
disp(TF);
The objective function and other functions needed:
function MaxSidelobe= FindBestPlacingGA(input)
input(1) = deg2rad(input(1));
mic_pos = [0 0.24 0
-0.2078 -0.12 0
0.2078 -0.12 0];
mic_pos = [Array3N(input(1),input(2));mic_pos];
MaxSidelobe= FPSF_Function(mic_pos,500,0:1:80);
end
function mic_pos = Array3N(theta,rho)
theta3N = [theta+pi/2;theta+pi*7/6;theta+pi*11/6];
mic_pos = zeros(3,3);
mic_pos(:,3) = 0;
[mic_pos(:,1),mic_pos(:,2)] = pol2cart(theta3N,rho);
end
function MSL= FPSF_Function(mic_pos,f,El)
Num_mic = size(mic_pos,1);
Az = -180:1: 180;
c = 343;
k0 = [0 0 -1];
numAz = length(Az);
numEl = length(El);
K = zeros(3, numAz, numEl);
for i = 1:numAz
for j = 1:numEl
az_rad = deg2rad(Az(i));
el_rad = deg2rad(El(j));
x = cos(az_rad) * sin(el_rad);
y = sin(az_rad) * sin(el_rad);
z = cos(el_rad);
K(:, i, j) = [x; y; z];
end
end
W = zeros(numAz,numEl);
for p = 1:numAz
for q = 1:numEl
for n = 1:Num_mic
W(p,q) = exp(-1i*dot(K(:,p,q)’-k0,mic_pos(n,:))*2*pi*f/c) + W(p,q);
end
end
end
W = W/Num_mic;
Y = 10*log10((abs(W)).^2);
local_max = imregionalmax(Y);
max_values = Y(local_max);
Mainlobe = max(max_values(:));
sidelobes = max_values(max_values~=Mainlobe);
MSL = Mainlobe – max(sidelobes(:));
end optimization live editor task, error, scalar value MATLAB Answers — New Questions