Why the Kf_LMax value is increased beyond its limits. Is their is any logical error Kindly help me out .
Why the Kf_LMax value is increased beyond its limits. Is their is any logical error Kindly help me out .
% Define parameters
Kf_Max = 100; % maximum forward rate
RLC = [0.1, 0.5, 10, 5, 10, 1]; % RLC values
TauKf_ON = -0.01; % TauKf_ON
TauKf_OFF = -0.01; % TauKf_OFF
PhaseTimes = [0, 500, 1000, 2000, 3000, 4000, 5000]; % phase times (each row defines a phase)
% Generate time vector
t = 0:0.01:5000;
% Call the function to compute receptor concentrations and Kf
[ Kf_LMax] = Kf_Cal(Kf_Max, RLC, TauKf_ON, TauKf_OFF, PhaseTimes, t);
% Plotting
figure;
% Plot Kf_LMax
plot(t, Kf_LMax, ‘b’, ‘LineWidth’, 1.5);
title(‘Kf_LMax over Time’);
xlabel(‘Time’);
ylabel(‘Kf_LMax’);
grid on;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ Kf_LMax] = Kf_Cal(Kf_Max, RLC, TauKf_ON, TauKf_OFF, PhaseTimes, t)
% Initialize output variables
Kf_LMax = zeros(size(t));
% Calculate Kf_L for each time step
for i = 1:length(t)
Kf_LMax(i) = calculate_kf(t(i), PhaseTimes, Kf_Max, RLC, TauKf_ON, TauKf_OFF);
end
% Nested function for calculating Kf_L based on time
function Kf_L = calculate_kf(t_current, PhaseTimes, Kf_Max, RLC, TauKf_ON, TauKf_OFF)
% Calculate maximum Kf_L based on RLC values using Element wise
% division
Kf_LMax_values = Kf_Max * (RLC ./ (1 + RLC));
% Default Kf_L to the maximum value of the first phase
Kf_L = Kf_LMax_values(1);
% Number of phases
num_phases = numel(RLC);
% Iterate through each phase to determine the current phase based on time
for j = 1:num_phases
T_start = PhaseTimes(j); % Start time of the current phase
if j < num_phases
T_end = PhaseTimes(j + 1); % End time of the current phase
else
T_end = inf; % Handle last phase separately
end
% Check if the current time t_current is within the current phase
if t_current >= T_start && t_current < T_end
if j == 1
% For the first phase, use the maximum value directly
Kf_L = Kf_LMax_values(j);
else
% Time at the end of the previous phase
% prev_end = PhaseTimes(j – 1);
if j < num_phases
% Check RLC conditions and compute Kf_L
if RLC(j – 1) < RLC(j) && RLC(j) > RLC(j + 1)
% Peak condition
Kf_endA = Kf_LMax_values(j) – (Kf_LMax_values(j) – Kf_LMax_values(j – 1)) * exp(TauKf_ON * (t_current – T_start));
Kf_L = Kf_LMax_values(j) + (Kf_endA – Kf_LMax_values(j – 1)) *exp(TauKf_OFF * ( t_current – T_start));
elseif RLC(j – 1) < RLC(j) && RLC(j) < RLC(j + 1)
% Increasing RLC condition
Kf_endB = Kf_LMax_values(j) – (Kf_LMax_values(j) – Kf_LMax_values(j – 1)) * exp(TauKf_ON * (t_current – T_start));
Kf_L = Kf_LMax_values(j) + (Kf_endB – Kf_LMax_values(j – 1)) *exp(TauKf_OFF * (t_current – T_start));
elseif RLC(j – 1) > RLC(j) && RLC(j) < RLC(j + 1)
% Decreasing RLC condition
Kf_endC = Kf_LMax_values(j) – (Kf_LMax_values(j) – Kf_LMax_values(j – 1)) * exp(TauKf_ON * (t_current – T_start));
Kf_L = Kf_LMax_values(j) + (Kf_endC – Kf_LMax_values(j – 1)) * exp(TauKf_OFF * (t_current – T_start ));
elseif RLC(j – 1) > RLC(j) && RLC(j) >= RLC(j + 1)
% Flat or decreasing RLC condition
Kf_endD = Kf_LMax_values(j) – (Kf_LMax_values(j) – Kf_LMax_values(j – 1)) * exp(TauKf_ON * (t_current – T_start));
Kf_L = Kf_LMax_values(j) + (Kf_endD – Kf_LMax_values(j – 1)) * exp(TauKf_OFF * (t_current – T_start ));
end
else
% % % Handling for the last phase
if RLC(j – 1) < RLC(j)
Kf_end1 = Kf_LMax_values(j) – (Kf_LMax_values(j) – Kf_LMax_values(j – 1)) * exp(TauKf_ON * (t_current – T_start) Kf_L = Kf_LMax_values(j) + (Kf_end1 – Kf_LMax_values(j – 1)) * exp(TauKf_OFF * (t_current – T_start));
elseif RLC(j – 1) > RLC(j)
Kf_end2 = Kf_LMax_values(j) – (Kf_LMax_values(j) – Kf_LMax_values(j – 1)) * exp(TauKf_ON * (t_current – T_start));
Kf_L = Kf_LMax_values(j) + (Kf_end2 – Kf_LMax_values(j – 1)) * exp(TauKf_OFF * (t_current – T_start));
end
end
end
return; % Exit the function after finding the correct phase
end
end
end
endWhy the Kf_LMax value is increased beyond its limits. Is their is any logical error Kindly help me out .
% Define parameters
Kf_Max = 100; % maximum forward rate
RLC = [0.1, 0.5, 10, 5, 10, 1]; % RLC values
TauKf_ON = -0.01; % TauKf_ON
TauKf_OFF = -0.01; % TauKf_OFF
PhaseTimes = [0, 500, 1000, 2000, 3000, 4000, 5000]; % phase times (each row defines a phase)
% Generate time vector
t = 0:0.01:5000;
% Call the function to compute receptor concentrations and Kf
[ Kf_LMax] = Kf_Cal(Kf_Max, RLC, TauKf_ON, TauKf_OFF, PhaseTimes, t);
% Plotting
figure;
% Plot Kf_LMax
plot(t, Kf_LMax, ‘b’, ‘LineWidth’, 1.5);
title(‘Kf_LMax over Time’);
xlabel(‘Time’);
ylabel(‘Kf_LMax’);
grid on;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ Kf_LMax] = Kf_Cal(Kf_Max, RLC, TauKf_ON, TauKf_OFF, PhaseTimes, t)
% Initialize output variables
Kf_LMax = zeros(size(t));
% Calculate Kf_L for each time step
for i = 1:length(t)
Kf_LMax(i) = calculate_kf(t(i), PhaseTimes, Kf_Max, RLC, TauKf_ON, TauKf_OFF);
end
% Nested function for calculating Kf_L based on time
function Kf_L = calculate_kf(t_current, PhaseTimes, Kf_Max, RLC, TauKf_ON, TauKf_OFF)
% Calculate maximum Kf_L based on RLC values using Element wise
% division
Kf_LMax_values = Kf_Max * (RLC ./ (1 + RLC));
% Default Kf_L to the maximum value of the first phase
Kf_L = Kf_LMax_values(1);
% Number of phases
num_phases = numel(RLC);
% Iterate through each phase to determine the current phase based on time
for j = 1:num_phases
T_start = PhaseTimes(j); % Start time of the current phase
if j < num_phases
T_end = PhaseTimes(j + 1); % End time of the current phase
else
T_end = inf; % Handle last phase separately
end
% Check if the current time t_current is within the current phase
if t_current >= T_start && t_current < T_end
if j == 1
% For the first phase, use the maximum value directly
Kf_L = Kf_LMax_values(j);
else
% Time at the end of the previous phase
% prev_end = PhaseTimes(j – 1);
if j < num_phases
% Check RLC conditions and compute Kf_L
if RLC(j – 1) < RLC(j) && RLC(j) > RLC(j + 1)
% Peak condition
Kf_endA = Kf_LMax_values(j) – (Kf_LMax_values(j) – Kf_LMax_values(j – 1)) * exp(TauKf_ON * (t_current – T_start));
Kf_L = Kf_LMax_values(j) + (Kf_endA – Kf_LMax_values(j – 1)) *exp(TauKf_OFF * ( t_current – T_start));
elseif RLC(j – 1) < RLC(j) && RLC(j) < RLC(j + 1)
% Increasing RLC condition
Kf_endB = Kf_LMax_values(j) – (Kf_LMax_values(j) – Kf_LMax_values(j – 1)) * exp(TauKf_ON * (t_current – T_start));
Kf_L = Kf_LMax_values(j) + (Kf_endB – Kf_LMax_values(j – 1)) *exp(TauKf_OFF * (t_current – T_start));
elseif RLC(j – 1) > RLC(j) && RLC(j) < RLC(j + 1)
% Decreasing RLC condition
Kf_endC = Kf_LMax_values(j) – (Kf_LMax_values(j) – Kf_LMax_values(j – 1)) * exp(TauKf_ON * (t_current – T_start));
Kf_L = Kf_LMax_values(j) + (Kf_endC – Kf_LMax_values(j – 1)) * exp(TauKf_OFF * (t_current – T_start ));
elseif RLC(j – 1) > RLC(j) && RLC(j) >= RLC(j + 1)
% Flat or decreasing RLC condition
Kf_endD = Kf_LMax_values(j) – (Kf_LMax_values(j) – Kf_LMax_values(j – 1)) * exp(TauKf_ON * (t_current – T_start));
Kf_L = Kf_LMax_values(j) + (Kf_endD – Kf_LMax_values(j – 1)) * exp(TauKf_OFF * (t_current – T_start ));
end
else
% % % Handling for the last phase
if RLC(j – 1) < RLC(j)
Kf_end1 = Kf_LMax_values(j) – (Kf_LMax_values(j) – Kf_LMax_values(j – 1)) * exp(TauKf_ON * (t_current – T_start) Kf_L = Kf_LMax_values(j) + (Kf_end1 – Kf_LMax_values(j – 1)) * exp(TauKf_OFF * (t_current – T_start));
elseif RLC(j – 1) > RLC(j)
Kf_end2 = Kf_LMax_values(j) – (Kf_LMax_values(j) – Kf_LMax_values(j – 1)) * exp(TauKf_ON * (t_current – T_start));
Kf_L = Kf_LMax_values(j) + (Kf_end2 – Kf_LMax_values(j – 1)) * exp(TauKf_OFF * (t_current – T_start));
end
end
end
return; % Exit the function after finding the correct phase
end
end
end
end Why the Kf_LMax value is increased beyond its limits. Is their is any logical error Kindly help me out .
% Define parameters
Kf_Max = 100; % maximum forward rate
RLC = [0.1, 0.5, 10, 5, 10, 1]; % RLC values
TauKf_ON = -0.01; % TauKf_ON
TauKf_OFF = -0.01; % TauKf_OFF
PhaseTimes = [0, 500, 1000, 2000, 3000, 4000, 5000]; % phase times (each row defines a phase)
% Generate time vector
t = 0:0.01:5000;
% Call the function to compute receptor concentrations and Kf
[ Kf_LMax] = Kf_Cal(Kf_Max, RLC, TauKf_ON, TauKf_OFF, PhaseTimes, t);
% Plotting
figure;
% Plot Kf_LMax
plot(t, Kf_LMax, ‘b’, ‘LineWidth’, 1.5);
title(‘Kf_LMax over Time’);
xlabel(‘Time’);
ylabel(‘Kf_LMax’);
grid on;
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
function [ Kf_LMax] = Kf_Cal(Kf_Max, RLC, TauKf_ON, TauKf_OFF, PhaseTimes, t)
% Initialize output variables
Kf_LMax = zeros(size(t));
% Calculate Kf_L for each time step
for i = 1:length(t)
Kf_LMax(i) = calculate_kf(t(i), PhaseTimes, Kf_Max, RLC, TauKf_ON, TauKf_OFF);
end
% Nested function for calculating Kf_L based on time
function Kf_L = calculate_kf(t_current, PhaseTimes, Kf_Max, RLC, TauKf_ON, TauKf_OFF)
% Calculate maximum Kf_L based on RLC values using Element wise
% division
Kf_LMax_values = Kf_Max * (RLC ./ (1 + RLC));
% Default Kf_L to the maximum value of the first phase
Kf_L = Kf_LMax_values(1);
% Number of phases
num_phases = numel(RLC);
% Iterate through each phase to determine the current phase based on time
for j = 1:num_phases
T_start = PhaseTimes(j); % Start time of the current phase
if j < num_phases
T_end = PhaseTimes(j + 1); % End time of the current phase
else
T_end = inf; % Handle last phase separately
end
% Check if the current time t_current is within the current phase
if t_current >= T_start && t_current < T_end
if j == 1
% For the first phase, use the maximum value directly
Kf_L = Kf_LMax_values(j);
else
% Time at the end of the previous phase
% prev_end = PhaseTimes(j – 1);
if j < num_phases
% Check RLC conditions and compute Kf_L
if RLC(j – 1) < RLC(j) && RLC(j) > RLC(j + 1)
% Peak condition
Kf_endA = Kf_LMax_values(j) – (Kf_LMax_values(j) – Kf_LMax_values(j – 1)) * exp(TauKf_ON * (t_current – T_start));
Kf_L = Kf_LMax_values(j) + (Kf_endA – Kf_LMax_values(j – 1)) *exp(TauKf_OFF * ( t_current – T_start));
elseif RLC(j – 1) < RLC(j) && RLC(j) < RLC(j + 1)
% Increasing RLC condition
Kf_endB = Kf_LMax_values(j) – (Kf_LMax_values(j) – Kf_LMax_values(j – 1)) * exp(TauKf_ON * (t_current – T_start));
Kf_L = Kf_LMax_values(j) + (Kf_endB – Kf_LMax_values(j – 1)) *exp(TauKf_OFF * (t_current – T_start));
elseif RLC(j – 1) > RLC(j) && RLC(j) < RLC(j + 1)
% Decreasing RLC condition
Kf_endC = Kf_LMax_values(j) – (Kf_LMax_values(j) – Kf_LMax_values(j – 1)) * exp(TauKf_ON * (t_current – T_start));
Kf_L = Kf_LMax_values(j) + (Kf_endC – Kf_LMax_values(j – 1)) * exp(TauKf_OFF * (t_current – T_start ));
elseif RLC(j – 1) > RLC(j) && RLC(j) >= RLC(j + 1)
% Flat or decreasing RLC condition
Kf_endD = Kf_LMax_values(j) – (Kf_LMax_values(j) – Kf_LMax_values(j – 1)) * exp(TauKf_ON * (t_current – T_start));
Kf_L = Kf_LMax_values(j) + (Kf_endD – Kf_LMax_values(j – 1)) * exp(TauKf_OFF * (t_current – T_start ));
end
else
% % % Handling for the last phase
if RLC(j – 1) < RLC(j)
Kf_end1 = Kf_LMax_values(j) – (Kf_LMax_values(j) – Kf_LMax_values(j – 1)) * exp(TauKf_ON * (t_current – T_start) Kf_L = Kf_LMax_values(j) + (Kf_end1 – Kf_LMax_values(j – 1)) * exp(TauKf_OFF * (t_current – T_start));
elseif RLC(j – 1) > RLC(j)
Kf_end2 = Kf_LMax_values(j) – (Kf_LMax_values(j) – Kf_LMax_values(j – 1)) * exp(TauKf_ON * (t_current – T_start));
Kf_L = Kf_LMax_values(j) + (Kf_end2 – Kf_LMax_values(j – 1)) * exp(TauKf_OFF * (t_current – T_start));
end
end
end
return; % Exit the function after finding the correct phase
end
end
end
end graph MATLAB Answers — New Questions