How can I plot the complete two circles vertical not horizontal ?
clc
A =[ -1.
0.
0.
0.
0.
0.
0.
0.
0.
-1.
1.
-1.
1.
-1.
2.
-2.
3.
-3.
4.
-5.
5.
-7.
8.
-10.
12.
-16.
20.
-34.
53.
-30.];
B=[ 3262.
131.
-375.
563.
-639.
602.
-486.
345.
-218.
124.
-64.
31.
-13.
5.
-2.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.];
C=[ 0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.];
AA=[ 8.
0.
1.
-1.
3.
-8.
21.
-52.
126.
-307.
738.
-1771.
4215.
-10047.
23743.
-56327.
132493.
-313806.
736630.
-1749066.
4111518.
-9852368.
23316548.
-57140296.
137506208.
-357384160.
896199040.
-3046175232.
9340706816.
-10404635648.];
BB=[ -76625208.
858156.
-3341452.
4741591.
-7006134.
8310705.
-9026788.
8857093.
-7988619.
6701862.
-5230164.
3847242.
-2655485.
1743048.
-1080089.
641116.
-360810.
195865.
-101116.
50743.
-24261.
11394.
-5098.
2281.
-969.
430.
-179.
97.
-47.
8.];
CC=[ 29.
0.
1.
-1.
1.
-1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.];
a = 1 ; %RADIUS
L=.1;
akm=2;gamma=0.3;arh=10; %beta1=beta2=1,a1=1,a2=2,arh=10,delta=0.5,u2=-1
alphaa=sqrt(((2+akm).*akm./(gamma.*(2+akm))).^2+arh.^2);
betaa=(2.*akm.*arh.^2./gamma).^(0.25);
alpha1=sqrt((alphaa.^2+sqrt(alphaa.^4-4.*betaa.^4))./2);
alpha2=sqrt((alphaa.^2-sqrt(alphaa.^4-4.*betaa.^4))./2);
dd=6;
c =-a/L;
b =a/L;
m =a*200; % NUMBER OF INTERVALS
%[x,y]=meshgrid((c+dd:(b-c)/m:b),(c:(b-c)/m:b)’);
[x,y]=meshgrid((c+dd:(b-c)/m:b),(0:(b-c)/m:b)’);
[I, J]=find(sqrt(x.^2+y.^2)<(a-0.1));
if ~isempty(I)
x(I,J) = 0; y(I,J) = 0;
end
r=sqrt(x.^2+y.^2);
t=atan2(y,x);
r2=sqrt(r.^2+dd.^2-2.*r.*dd.*cos(t));
zet=(r.^2-r2.^2-dd.^2)./(2.*r2.*dd);
warning on
psi1=0;
for i=2:7
Ai=A(i-1);Bi=B(i-1);Ci=C(i-1);AAi=AA(i-1);BBi=BB(i-1);CCi=CC(i-1);
%psi1=-psi1-(Ai.*r.^(-i-1)+r.^(-3./2).*besselk(i-1./2,r.*alpha1).*Bi+r.^(-3./2).*besselk(i-1./2,r.*alpha2).*Ci).*legendreP(i-1,cos(t))-(AAi.*r2.^(-i-1)+r2.^(-3./2).*besselk(i-1./2,r2.*alpha1).*BBi+r2.^(1./2).*besselk(i-1./2,r2.*alpha2).*CCi).*legendreP(i-1,zet);
psi1=psi1+(Ai.*r.^(-i+1)+r.^(1./2).*besselk(i-1./2,r.*alpha1).*Bi+r.^(1./2).*besselk(i-1./2,r.*alpha2).*Ci).*gegenbauerC(i,-1./2, cos(t))+(AAi.*r2.^(-i+1)+r2.^(1./2).*besselk(i-1./2,r2.*alpha1).*BBi+r2.^(1./2).*besselk(i-1./2,r2.*alpha2).*CCi).*gegenbauerC(i,-1./2,zet);
end
hold on
%[DH1,h1]=contour(x,y,psi1,25,’-k’,’LineWidth’,1.1); %,psi2,’–k’,psi2,’:k’
%[DH1,h1]=contour(x,y,psi1);
%p1=contour(x,y,psi1,[0.3 0.3],’k’,’LineWidth’,1.1); %,’ShowText’,’on’
%p2=contour(x,y,psi1,[0.4 0.4],’r’,’LineWidth’,1.1);
%p3=contour(x,y,psi1,[0.5 0.5],’g’,’LineWidth’,1.1);
%p4=contour(x,y,psi1,[0.6 0.6],’b’,’LineWidth’,1.1);
%p5=contour(x,y,psi1,[0.7 0.7],’c’,’LineWidth’,1.1);
%p6=contour(x,y,psi1,[0.8 0.8],’m’,’LineWidth’,1.1);
%p7=contour(x,y,psi1,[0.9 0.9],’y’,’LineWidth’,1.1);
p1=contour(x,y,psi1,[0.01 0.01],’k’,’LineWidth’,1.1); %,’ShowText’,’on’
p2=contour(x,y,psi1,[0.05 .05],’r’,’LineWidth’,1.1);
p3=contour(x,y,psi1,[0.1 0.1],’g’,’LineWidth’,1.1);
p4=contour(x,y,psi1,[0.4 0.4],’b’,’LineWidth’,1.1);
p5=contour(x,y,psi1,[0.6 0.6],’c’,’LineWidth’,1.1);
p6=contour(x,y,psi1,[0.8 0.8],’m’,’LineWidth’,1.1);
%clabel(DH1,h1,’FontSize’,10,’Color’,’red’)
%%%%%%%%%%%%%%% $frac{textstyle a_1+a_2}{textstyle h}=6.0,;
hold on
t3 = linspace(0,pi,1000);
h2=0;
k2=0;
rr2=2;
x2 = rr2*cos(t3)+h2;
y2 = rr2*sin(t3)+k2;
set(plot(x2,y2,’-k’),’LineWidth’,1.1);
fill(x2,y2,’w’)
hold on
t2 = linspace(0,pi,1000);
h=dd;
k=0;
rr=1;
x1 = rr*cos(t2)+h;
y1 = rr*sin(t2)+k;
set(plot(x1,y1,’-k’),’LineWidth’,1.1);
fill(x1,y1,’w’)
%axis square;
axis(‘equal’)
box on
%set(gca,’XTick’,[], ‘YTick’, [])
axis on
xticklabels([])
yticklabels([])
legend(‘0.01′,’0.05′,’0.1′,’0.4′,’0.6′,’0.8′,’Location’,’northwest’)
%title(‘$frac{beta_1}{a_1mu}=frac{a_1beta_2}{mu}=1.0,;R_{H}=1.0,;frac{a_2}{a_1}=2.0$’,’Interpreter’,’latex’,’FontSize’,12,’FontName’,’Times New Roman’,’FontWeight’,’Normal’)
%title(‘$(a);; R_{H}=1.0,;frac{kappa}{mu}=4.0$’,’Interpreter’,’latex’,’FontSize’,12,’FontName’,’Times New Roman’,’FontWeight’,’Normal’)
%%%%%%%%%%%%%%%%%%%%clc
A =[ -1.
0.
0.
0.
0.
0.
0.
0.
0.
-1.
1.
-1.
1.
-1.
2.
-2.
3.
-3.
4.
-5.
5.
-7.
8.
-10.
12.
-16.
20.
-34.
53.
-30.];
B=[ 3262.
131.
-375.
563.
-639.
602.
-486.
345.
-218.
124.
-64.
31.
-13.
5.
-2.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.];
C=[ 0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.];
AA=[ 8.
0.
1.
-1.
3.
-8.
21.
-52.
126.
-307.
738.
-1771.
4215.
-10047.
23743.
-56327.
132493.
-313806.
736630.
-1749066.
4111518.
-9852368.
23316548.
-57140296.
137506208.
-357384160.
896199040.
-3046175232.
9340706816.
-10404635648.];
BB=[ -76625208.
858156.
-3341452.
4741591.
-7006134.
8310705.
-9026788.
8857093.
-7988619.
6701862.
-5230164.
3847242.
-2655485.
1743048.
-1080089.
641116.
-360810.
195865.
-101116.
50743.
-24261.
11394.
-5098.
2281.
-969.
430.
-179.
97.
-47.
8.];
CC=[ 29.
0.
1.
-1.
1.
-1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.];
a = 1 ; %RADIUS
L=.1;
akm=2;gamma=0.3;arh=10; %beta1=beta2=1,a1=1,a2=2,arh=10,delta=0.5,u2=-1
alphaa=sqrt(((2+akm).*akm./(gamma.*(2+akm))).^2+arh.^2);
betaa=(2.*akm.*arh.^2./gamma).^(0.25);
alpha1=sqrt((alphaa.^2+sqrt(alphaa.^4-4.*betaa.^4))./2);
alpha2=sqrt((alphaa.^2-sqrt(alphaa.^4-4.*betaa.^4))./2);
dd=6;
c =-a/L;
b =a/L;
m =a*200; % NUMBER OF INTERVALS
%[x,y]=meshgrid((c+dd:(b-c)/m:b),(c:(b-c)/m:b)’);
[x,y]=meshgrid((c+dd:(b-c)/m:b),(0:(b-c)/m:b)’);
[I, J]=find(sqrt(x.^2+y.^2)<(a-0.1));
if ~isempty(I)
x(I,J) = 0; y(I,J) = 0;
end
r=sqrt(x.^2+y.^2);
t=atan2(y,x);
r2=sqrt(r.^2+dd.^2-2.*r.*dd.*cos(t));
zet=(r.^2-r2.^2-dd.^2)./(2.*r2.*dd);
warning on
psi1=0;
for i=2:7
Ai=A(i-1);Bi=B(i-1);Ci=C(i-1);AAi=AA(i-1);BBi=BB(i-1);CCi=CC(i-1);
%psi1=-psi1-(Ai.*r.^(-i-1)+r.^(-3./2).*besselk(i-1./2,r.*alpha1).*Bi+r.^(-3./2).*besselk(i-1./2,r.*alpha2).*Ci).*legendreP(i-1,cos(t))-(AAi.*r2.^(-i-1)+r2.^(-3./2).*besselk(i-1./2,r2.*alpha1).*BBi+r2.^(1./2).*besselk(i-1./2,r2.*alpha2).*CCi).*legendreP(i-1,zet);
psi1=psi1+(Ai.*r.^(-i+1)+r.^(1./2).*besselk(i-1./2,r.*alpha1).*Bi+r.^(1./2).*besselk(i-1./2,r.*alpha2).*Ci).*gegenbauerC(i,-1./2, cos(t))+(AAi.*r2.^(-i+1)+r2.^(1./2).*besselk(i-1./2,r2.*alpha1).*BBi+r2.^(1./2).*besselk(i-1./2,r2.*alpha2).*CCi).*gegenbauerC(i,-1./2,zet);
end
hold on
%[DH1,h1]=contour(x,y,psi1,25,’-k’,’LineWidth’,1.1); %,psi2,’–k’,psi2,’:k’
%[DH1,h1]=contour(x,y,psi1);
%p1=contour(x,y,psi1,[0.3 0.3],’k’,’LineWidth’,1.1); %,’ShowText’,’on’
%p2=contour(x,y,psi1,[0.4 0.4],’r’,’LineWidth’,1.1);
%p3=contour(x,y,psi1,[0.5 0.5],’g’,’LineWidth’,1.1);
%p4=contour(x,y,psi1,[0.6 0.6],’b’,’LineWidth’,1.1);
%p5=contour(x,y,psi1,[0.7 0.7],’c’,’LineWidth’,1.1);
%p6=contour(x,y,psi1,[0.8 0.8],’m’,’LineWidth’,1.1);
%p7=contour(x,y,psi1,[0.9 0.9],’y’,’LineWidth’,1.1);
p1=contour(x,y,psi1,[0.01 0.01],’k’,’LineWidth’,1.1); %,’ShowText’,’on’
p2=contour(x,y,psi1,[0.05 .05],’r’,’LineWidth’,1.1);
p3=contour(x,y,psi1,[0.1 0.1],’g’,’LineWidth’,1.1);
p4=contour(x,y,psi1,[0.4 0.4],’b’,’LineWidth’,1.1);
p5=contour(x,y,psi1,[0.6 0.6],’c’,’LineWidth’,1.1);
p6=contour(x,y,psi1,[0.8 0.8],’m’,’LineWidth’,1.1);
%clabel(DH1,h1,’FontSize’,10,’Color’,’red’)
%%%%%%%%%%%%%%% $frac{textstyle a_1+a_2}{textstyle h}=6.0,;
hold on
t3 = linspace(0,pi,1000);
h2=0;
k2=0;
rr2=2;
x2 = rr2*cos(t3)+h2;
y2 = rr2*sin(t3)+k2;
set(plot(x2,y2,’-k’),’LineWidth’,1.1);
fill(x2,y2,’w’)
hold on
t2 = linspace(0,pi,1000);
h=dd;
k=0;
rr=1;
x1 = rr*cos(t2)+h;
y1 = rr*sin(t2)+k;
set(plot(x1,y1,’-k’),’LineWidth’,1.1);
fill(x1,y1,’w’)
%axis square;
axis(‘equal’)
box on
%set(gca,’XTick’,[], ‘YTick’, [])
axis on
xticklabels([])
yticklabels([])
legend(‘0.01′,’0.05′,’0.1′,’0.4′,’0.6′,’0.8′,’Location’,’northwest’)
%title(‘$frac{beta_1}{a_1mu}=frac{a_1beta_2}{mu}=1.0,;R_{H}=1.0,;frac{a_2}{a_1}=2.0$’,’Interpreter’,’latex’,’FontSize’,12,’FontName’,’Times New Roman’,’FontWeight’,’Normal’)
%title(‘$(a);; R_{H}=1.0,;frac{kappa}{mu}=4.0$’,’Interpreter’,’latex’,’FontSize’,12,’FontName’,’Times New Roman’,’FontWeight’,’Normal’)
%%%%%%%%%%%%%%%%%%%% clc
A =[ -1.
0.
0.
0.
0.
0.
0.
0.
0.
-1.
1.
-1.
1.
-1.
2.
-2.
3.
-3.
4.
-5.
5.
-7.
8.
-10.
12.
-16.
20.
-34.
53.
-30.];
B=[ 3262.
131.
-375.
563.
-639.
602.
-486.
345.
-218.
124.
-64.
31.
-13.
5.
-2.
1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.];
C=[ 0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.];
AA=[ 8.
0.
1.
-1.
3.
-8.
21.
-52.
126.
-307.
738.
-1771.
4215.
-10047.
23743.
-56327.
132493.
-313806.
736630.
-1749066.
4111518.
-9852368.
23316548.
-57140296.
137506208.
-357384160.
896199040.
-3046175232.
9340706816.
-10404635648.];
BB=[ -76625208.
858156.
-3341452.
4741591.
-7006134.
8310705.
-9026788.
8857093.
-7988619.
6701862.
-5230164.
3847242.
-2655485.
1743048.
-1080089.
641116.
-360810.
195865.
-101116.
50743.
-24261.
11394.
-5098.
2281.
-969.
430.
-179.
97.
-47.
8.];
CC=[ 29.
0.
1.
-1.
1.
-1.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.
0.];
a = 1 ; %RADIUS
L=.1;
akm=2;gamma=0.3;arh=10; %beta1=beta2=1,a1=1,a2=2,arh=10,delta=0.5,u2=-1
alphaa=sqrt(((2+akm).*akm./(gamma.*(2+akm))).^2+arh.^2);
betaa=(2.*akm.*arh.^2./gamma).^(0.25);
alpha1=sqrt((alphaa.^2+sqrt(alphaa.^4-4.*betaa.^4))./2);
alpha2=sqrt((alphaa.^2-sqrt(alphaa.^4-4.*betaa.^4))./2);
dd=6;
c =-a/L;
b =a/L;
m =a*200; % NUMBER OF INTERVALS
%[x,y]=meshgrid((c+dd:(b-c)/m:b),(c:(b-c)/m:b)’);
[x,y]=meshgrid((c+dd:(b-c)/m:b),(0:(b-c)/m:b)’);
[I, J]=find(sqrt(x.^2+y.^2)<(a-0.1));
if ~isempty(I)
x(I,J) = 0; y(I,J) = 0;
end
r=sqrt(x.^2+y.^2);
t=atan2(y,x);
r2=sqrt(r.^2+dd.^2-2.*r.*dd.*cos(t));
zet=(r.^2-r2.^2-dd.^2)./(2.*r2.*dd);
warning on
psi1=0;
for i=2:7
Ai=A(i-1);Bi=B(i-1);Ci=C(i-1);AAi=AA(i-1);BBi=BB(i-1);CCi=CC(i-1);
%psi1=-psi1-(Ai.*r.^(-i-1)+r.^(-3./2).*besselk(i-1./2,r.*alpha1).*Bi+r.^(-3./2).*besselk(i-1./2,r.*alpha2).*Ci).*legendreP(i-1,cos(t))-(AAi.*r2.^(-i-1)+r2.^(-3./2).*besselk(i-1./2,r2.*alpha1).*BBi+r2.^(1./2).*besselk(i-1./2,r2.*alpha2).*CCi).*legendreP(i-1,zet);
psi1=psi1+(Ai.*r.^(-i+1)+r.^(1./2).*besselk(i-1./2,r.*alpha1).*Bi+r.^(1./2).*besselk(i-1./2,r.*alpha2).*Ci).*gegenbauerC(i,-1./2, cos(t))+(AAi.*r2.^(-i+1)+r2.^(1./2).*besselk(i-1./2,r2.*alpha1).*BBi+r2.^(1./2).*besselk(i-1./2,r2.*alpha2).*CCi).*gegenbauerC(i,-1./2,zet);
end
hold on
%[DH1,h1]=contour(x,y,psi1,25,’-k’,’LineWidth’,1.1); %,psi2,’–k’,psi2,’:k’
%[DH1,h1]=contour(x,y,psi1);
%p1=contour(x,y,psi1,[0.3 0.3],’k’,’LineWidth’,1.1); %,’ShowText’,’on’
%p2=contour(x,y,psi1,[0.4 0.4],’r’,’LineWidth’,1.1);
%p3=contour(x,y,psi1,[0.5 0.5],’g’,’LineWidth’,1.1);
%p4=contour(x,y,psi1,[0.6 0.6],’b’,’LineWidth’,1.1);
%p5=contour(x,y,psi1,[0.7 0.7],’c’,’LineWidth’,1.1);
%p6=contour(x,y,psi1,[0.8 0.8],’m’,’LineWidth’,1.1);
%p7=contour(x,y,psi1,[0.9 0.9],’y’,’LineWidth’,1.1);
p1=contour(x,y,psi1,[0.01 0.01],’k’,’LineWidth’,1.1); %,’ShowText’,’on’
p2=contour(x,y,psi1,[0.05 .05],’r’,’LineWidth’,1.1);
p3=contour(x,y,psi1,[0.1 0.1],’g’,’LineWidth’,1.1);
p4=contour(x,y,psi1,[0.4 0.4],’b’,’LineWidth’,1.1);
p5=contour(x,y,psi1,[0.6 0.6],’c’,’LineWidth’,1.1);
p6=contour(x,y,psi1,[0.8 0.8],’m’,’LineWidth’,1.1);
%clabel(DH1,h1,’FontSize’,10,’Color’,’red’)
%%%%%%%%%%%%%%% $frac{textstyle a_1+a_2}{textstyle h}=6.0,;
hold on
t3 = linspace(0,pi,1000);
h2=0;
k2=0;
rr2=2;
x2 = rr2*cos(t3)+h2;
y2 = rr2*sin(t3)+k2;
set(plot(x2,y2,’-k’),’LineWidth’,1.1);
fill(x2,y2,’w’)
hold on
t2 = linspace(0,pi,1000);
h=dd;
k=0;
rr=1;
x1 = rr*cos(t2)+h;
y1 = rr*sin(t2)+k;
set(plot(x1,y1,’-k’),’LineWidth’,1.1);
fill(x1,y1,’w’)
%axis square;
axis(‘equal’)
box on
%set(gca,’XTick’,[], ‘YTick’, [])
axis on
xticklabels([])
yticklabels([])
legend(‘0.01′,’0.05′,’0.1′,’0.4′,’0.6′,’0.8′,’Location’,’northwest’)
%title(‘$frac{beta_1}{a_1mu}=frac{a_1beta_2}{mu}=1.0,;R_{H}=1.0,;frac{a_2}{a_1}=2.0$’,’Interpreter’,’latex’,’FontSize’,12,’FontName’,’Times New Roman’,’FontWeight’,’Normal’)
%title(‘$(a);; R_{H}=1.0,;frac{kappa}{mu}=4.0$’,’Interpreter’,’latex’,’FontSize’,12,’FontName’,’Times New Roman’,’FontWeight’,’Normal’)
%%%%%%%%%%%%%%%%%%%% stream, two circles, vertical axis MATLAB Answers — New Questions