[With code and PDF] How can I solve systems of PDEs with three independent variables by using the ode15s solver of the MATLAB?
[***Please find the matlab commands and PDF files***]
Now, I am trying to solve systems of PDEs (attached PDF file) by MATLAB. As you can see, this PDEs have three independent variable (z,r,t).
According to a kind suggestion by "Torsten" (http://www.mathworks.com/matlabcentral/answers/170648), I have discretized my equations about z- and r-coordinate. Then, I have developed matlab codes (PDEbook_s.m with pde_s.m, dss004,m and dss044.m) by using ode15s as follows. dss004 and dss044 (by http://www.pdecomp.net/) calculate first and second derivative values, respectively.
In this PDEs, the U and C values should decrease to zero value with increasing time. However, this values closed to a constant value. (Please run the commands in your command window) . Therefore, I think that this command cannot return correct values of the PDE systems now.
Can you find any problem in these codes?
*************PDEbook_s.m ****************************************************************************************
format short
%
% Clear previous files
clear all
clc
%
%Global data
global nr nz dr dz drs dzs…
r z zl r0 call tf ncall…
%
%Model parameters
zl=1;
r0=1;
%
% Grid in axial direcion
nz=10;
dz=zl/(nz-1);
for i=1:nz;
z(i)=(i-1)*dz;
end
dzs=dz^2;
%
%Grid in radial direction
nr=10;
dr=r0/(nr-1);
for j=1:nr
r(j)=(j-1)*dr;
end
drs=dr^2;
%
%Independent variables for ODE integration
tf=5;
delt=1.0E-2;
tout=[0.0:delt:(tf-delt)];
nout=(tf)/delt;
call=0;
%
%intial condition
for i=1:nz
for j=1:nr
C(i,j)=0;
U(i,j)=1;
y0((i-1)*nr+j)=C(i,j);
y0((i-1)*nr+j+nz*nr)=U(i,j);
end
end
%
%ODE integration
reltol=1.0E-4; abstol=1.0E-5;
options=odeset(‘RelTol’,reltol, ‘AbsTol’,abstol);
[t,y]=ode15s(@pde_s,tout,y0,options);
%
%1D to 2D matrices
for it=1:nout
for i=1:nz
for j=1:nr
C(it,i,j)=y(it,(i-1)*nr+j);
U(it,i,j)=y(it,(i-1)*nr+j+nz*nr);
end
end
end
%
% t-C,U plots (r=r0)
figure(1);
subplot(2,2,1)
plot(tout,C(:,1,nr),’–g’,tout,U(:,1,nr),’:r’); axis([0 tf 0 1]);
title(‘Solution(z=0,r=r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
subplot(2,2,2)
plot(tout,C(:,5,nr),’–g’,tout,U(:,5,nr),’:r’); axis([0 tf 0 1]);
title(‘Solution(z=4*dz,r=r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
subplot(2,2,3)
plot(tout,C(:,8,nr),’–g’,tout,U(:,8,nr),’:r’); axis([0 tf 0 1]);
title(‘Solution(z=*7dz,r=r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
subplot(2,2,4)
plot(tout,C(:,nz,nr),’–g’,tout,U(:,nz,nr),’:r’); axis([0 tf 0 1]);
title(‘Solution(z=zl,r=r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
%
% t-C,U plots (r=1/2r0)
figure(2);
subplot(2,2,1)
plot(tout,C(:,1,5),’–g’,tout,U(:,1,5),’:r’); axis([0 tf 0 1]);
title(‘Solution(=0,r=1/2r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
subplot(2,2,2)
plot(tout,C(:,5,5),’–g’,tout,U(:,5,5),’:r’); axis([0 tf 0 1]);
title(‘Solution(=4*dz,r=1/2r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
subplot(2,2,3)
plot(tout,C(:,8,5),’–g’,tout,U(:,8,5),’:r’); axis([0 tf 0 1]);
title(‘Solution(z=*7dz,r=1/2r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
subplot(2,2,4)
plot(tout,C(:,nz,5),’–g’,tout,U(:,nz,5),’:r’); axis([0 tf 0 1]);
title(‘Solution(z=zl,r=1/2r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
*****End of PDEbook_s****************************************************************************************
***********pde_s.m ****************************************************************************************
function yt=pde_s(t,y)
%
%Global data
global nr nz dr dz drs dzs…
r z zl r0 call tf ncall…
%
% 1D to 2D matrices
for i=1:nz
for j=1:nr
ij=(i-1)*nr+j;
C(i,j)=y(ij);
U(i,j)=y(ij+nr*nz);
end
end
%
% Step through the grid points in r and z
for i=1:nz
C1d=C(i,:); %1d means 1D value
U1d=U(i,:);
%
% Ur by dss004:Ur means first derivative of U for r
Ur1d=dss004(0.0,r0,nr,U1d); %Ur means first derivative of U for r
Ur(i,:)=Ur1d;
Ur(i,1)= 0.0; %B.C.1 of Eq.(1)
Ur(i,nr)=C(i,j)-U(i,nr);%B.C.2 of Eq.(1)
%
%Urr by dss 044 with the Neumann B.D. (nl=nu=2):Urr means second derivative of U for r
Ur1d( 1)=0.0;%B.C.1 of Eq.(1)
Ur1d(nr)=C1d(j)-U1d(nr);%B.C.2 of Eq.(1)
nl=2;
nu=2;
Urr1d=dss044(0.0,r0,nr,U1d,Ur1d,nl,nu);
Urr(i,:)=Urr1d;
%
for j=1:nr
%
% (1/r)*Ur
if(j~=1)
Ur(i,j)=(1.0/r(j))*Ur(i,j);
end
if(j==1)Urr(i,j)=2.0*Urr(i,j);end
%
% Cz by dss004:Cz means first derivative of C for z
Cz1d=dss004(0.0,zl,nz,C1d);
Cz(:,j)=Cz1d;
Cz(1,j)= C1d(1);%B.C.1 of Eq.(2)
Cz(nz,j)=0.0;%B.C.2 of Eq.(2)
%
% Czz by dss044 with the Neumann B.D. (nl=nu=2):Czz means second derivative of C for z
% Czz
Cz1d(1)=C(1,nr);%B.C.1 of Eq.(2)
Cz1d(nz)=0.0;%B.C.2 of Eq.(2)
nl=2;
nu=2;
Czz1d=dss044(0.0,zl,nz,C1d,Cz1d,nl,nu);
Czz(:,j)=Czz1d;
%
% PDEs
Ut(i,j)=(1/(1+U(i,j)))*Ur(i,j)+(1/(1+U(i,j)))*Urr(i,j); %Eq.(1)
Ct(i,j)=Czz(i,j)-Cz(i,j)+(U(i,nr)-C(i,j)); % Eq.(2)
end
end
%
% 2D to 1D matrices
for i=1:nz
for j=1:nr
ij=(i-1)*nr+j;
yt(ij)=Ct(i,j);
yt(ij+nr*nz)=Ut(i,j);
end
end
%
% Transpose and count
yt=yt’;
ncall=ncall+1;
end
***********End of pde_s.m ****************************************************************************************
***********dss004.m ****************************************************************************************
% File: dss004.m
%
function [ux]=dss004(xl,xu,n,u)
%
% Function dss004 computes the first derivative, u , of a
% x
% variable u over the spatial domain xl le x le xu from classical
% five-point, fourth-order finite difference approximations
%
% Argument list
%
% xl Lower boundary value of x (input)
%
% xu Upper boundary value of x (input)
%
% n Number of grid points in the x domain including the
% boundary points (input)
%
% u One-dimensional array containing the values of u at
% the n grid point points for which the derivative is
% to be computed (input)
%
% ux One-dimensional array containing the numerical
% values of the derivatives of u at the n grid points
% (output)
%
% The mathematical details of the following Taylor series (or
% polynomials) are given in routine dss002.
%
% Five-point formulas
%
% (1) Left end, point i = 1
%
% 2 3 4
% a(u2 = u1 + u1 ( dx) + u1 ( dx) + u1 ( dx) + u1 ( dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 ( dx) + u1 ( dx) + u1 ( dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% b(u3 = u1 + u1 (2dx) + u1 (2dx) + u1 (2dx) + u1 (2dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 (2dx) + u1 (2dx) + u1 (2dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% c(u4 = u1 + u1 (3dx) + u1 (3dx) + u1 (3dx) + u1 (3dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 (3dx) + u1 (3dx) + u1 (3dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% d(u5 = u1 + u1 (4dx) + u1 (4dx) + u1 (4dx) + u1 (4dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 (4dx) + u1 (4dx) + u1 (4dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% Constants a, b, c and d are selected so that the coefficients
% of the u1 terms sum to one and the coefficients of the u1 ,
% x 2x
% u1 and u1 terms sum to zero
% 3x 4x
%
% a + 2b + 3c + 4d = 1
%
% a + 4b + 9c + 16d = 0
%
% a + 8b + 27c + 64d = 0
%
% a + 16b + 81c + 256d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% u1 = (1/12dx)(-25u1 + 48u2 – 36u3 + 16u4 – 3u5) + O(dx ) (1)
% x
%
% (2) Interior point, i = 2
%
% 2 3 4
% a(u1 = u2 + u2 (-dx) + u2 (-dx) + u2 (-dx) + u2 (-dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 (-dx) + u2 (-dx) + u2 (-dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% b(u3 = u2 + u2 ( dx) + u2 ( dx) + u2 ( dx) + u2 ( dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 ( dx) + u2 ( dx) + u2 ( dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% c(u4 = u2 + u2 (2dx) + u2 (2dx) + u2 (2dx) + u2 (2dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 (2dx) + u2 (2dx) + u2 (2dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% d(u5 = u2 + u2 (3dx) + u2 (3dx) + u2 (3dx) + u2 (3dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 (3dx) + u2 (3dx) + u2 (3dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% -a + b + 2c + 3d = 1
%
% a + b + 4c + 9d = 0
%
% -a + b + 8c + 27d = 0
%
% a + b + 16c + 81d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% u2 = (1/12dx)(-3u1 – 10u2 + 18u3 – 6u4 + u5) + O(dx ) (2)
% x
%
% (3) Interior point i, i ne 2, n-1
%
% 2 3
% a(ui-2 = ui + ui (-2dx) + ui (-2dx) + ui (-2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui (-2dx) + ui (-2dx) + ui (-2dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% b(ui-1 = ui + ui ( -dx) + ui ( -dx) + ui ( -dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui ( -dx) + ui ( -dx) + ui ( -dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% c(ui+1 = ui + ui ( dx) + ui ( dx) + ui ( dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui ( dx) + ui ( dx) + ui ( dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% d(ui+2 = ui + ui ( 2dx) + ui ( 2dx) + ui ( 2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui ( 2dx) + ui ( 2dx) + ui ( 2dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% -2a – b + c + 2d = 1
%
% 4a + b + c + 4d = 0
%
% -8a – b + c + 8d = 0
%
% 16a + b + c + 16d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% ui = (1/12dx)(ui-2 – 8ui-1 + 0ui + 8ui+1 – ui+2) + O(dx ) (3)
% x
%
% (4) Interior point, i = n-1
%
% 2 3
% a(un-4 = un-1 + un-1 (-3dx) + un-1 (-3dx) + un-1 (-3dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 (-3dx) + un-1 (-3dx) + un-1 (-3dx) + …
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% b(un-3 = un-1 + un-1 (-2dx) + un-1 (-2dx) + un-1 (-2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 (-2dx) + un-1 (-2dx) + un-1 (-2dx) + …
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% c(un-2 = un-1 + un-1 ( -dx) + un-1 (- -x) + un-1 ( -dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 ( -dx) + un-1 ( -dx) + un-1 ( -dx) + …
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% d(un = un-1 + un-1 ( dx) + un-1 ( dx) + un-1 ( dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 ( dx) + un-1 ( dx) + un-1 ( dx) + …
% 4x 4f 5x 5f 6x 6f
%
% -3a – 2b – c + d = 1
%
% 9a + 4b + c + d = 0
%
% -27a – 8b – c + d = 0
%
% 81a + 16b + c + d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% un-1 = (1/12dx)(-un-4 + 6un-3 – 18un-2 + 10un-1 + 3un) + O(dx )
% x
% (4)
%
% (5) Right end, point i = n
%
% 2 3
% a(un-4 = un + un (-4dx) + un (-4dx) + un (-4dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un (-4dx) + un (-4dx) + un (-4dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% b(un-3 = un + un (-3dx) + un (-3dx) + un (-3dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un (-3dx) + un (-3dx) + un (-3dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% c(un-2 = un + un (-2dx) + un (-2dx) + un (-2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un (-2dx) + un (-2dx) + un (-2dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% d(un-1 = un + un ( -dx) + un ( -dx) + un ( -dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un ( -dx) + un ( -dx) + un ( -dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% -4a – 3b – 2c – d = 1
%
% 16a + 9b + 4c + d = 0
%
% -64a – 27b – 8c – d = 0
%
% 256a + 81b + 16c + d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% un = (1/12dx)(3un-4 – 16un-3 + 36un-2 – 48un-1 + 25un) + O(dx )
% x
% (5)
%
% The weighting coefficients for equations (1) to (5) can be
% summarized as
%
% -25 48 -36 16 -3
%
% -3 -10 18 -6 1
%
% 1/12 1 -8 0 8 -1
%
% -1 6 -18 10 3
%
% 3 -16 36 -48 25
%
% which are the coefficients reported by Bickley for n = 4, m =
% 1, p = 0, 1, 2, 3, 4 (Bickley, W. G., Formulae for Numerical
% Differentiation, Math. Gaz., vol. 25, 1941. Note – the Bickley
% coefficients have been divided by a common factor of two).
%
% Equations (1) to (5) can now be programmed to generate the
% derivative u (x) of function u(x).
% x
%
% Compute the spatial increment
dx=(xu-xl)/(n-1);
r4fdx=1./(12.*dx);
nm2=n-2;
%
% Equation (1) (note – the rhs of equations (1), (2), (3), (4)
% and (5) have been formatted so that the numerical weighting
% coefficients can be more easily associated with the Bickley
% matrix above)
ux( 1)=r4fdx*…
( -25.*u( 1) +48.*u( 2) -36.*u( 3) +16.*u( 4) -3.*u( 5));
%
% Equation (2)
ux( 2)=r4fdx*…
( -3.*u( 1) -10.*u( 2) +18.*u( 3) -6.*u( 4) +1.*u( 5));
%
% Equation (3)
for i=3:nm2
ux( i)=r4fdx*…
( +1.*u(i-2) -8.*u(i-1) +0.*u( i) +8.*u(i+1) -1.*u(i+2));
end
%
% Equation (4)
ux(n-1)=r4fdx*…
( -1.*u(n-4) +6.*u(n-3) -18.*u(n-2) +10.*u(n-1) +3.*u( n));
%
% Equation (5)
ux( n)=r4fdx*…
( 3.*u(n-4) -16.*u(n-3) +36.*u(n-2) -48.*u(n-1) +25.*u( n));
***********End of dss004.m **************************************************************************************
***********dss044.m ****************************************************************************************
% File: ds044.m
%
function [uxx]=dss044(xl,xu,n,u,ux,nl,nu)
%
% Function dss044 computes a fourth-order approximation of a
% second-order derivative, with or without the normal derivative
% at the boundary.
%
% Argument list
%
% xl Left value of the spatial independent variable (input)
%
% xu Right value of the spatial independent variable (input)
%
% n Number of spatial grid points, including the end
% points (input)
%
% u One-dimensional array of the dependent variable to be
% differentiated (input)
%
% ux One-dimensional array of the first derivative of u.
% The end values of ux, ux(1) and ux(n), are used in
% Neumann boundary conditions at x = xl and x = xu,
% depending on the arguments nl and nu (see the de-
% scription of nl and nu below)
%
% uxx One-dimensional array of the second derivative of u
% (output)
%
% nl Integer index for the type of boundary condition at
% x = xl (input). The allowable values are
%
% 1 – Dirichlet boundary condition at x = xl
% (ux(1) is not used)
%
% 2 – Neumann boundary condition at x = xl
% (ux(1) is used)
%
% nu Integer index for the type of boundary condition at
% x = xu (input). The allowable values are
%
% 1 – Dirichlet boundary condition at x = xu
% (ux(n) is not used)
%
% 2 – Neumann boundary condition at x = xu
% (ux(n) is used)
%
% The following derivation was completed by W. E. Schiesser, Depts
% of CHE and Math, Lehigh University, Bethlehem, PA 18015, USA, on
% December 15, 1986. Additional details are given in function
% dss042.
%
% ******************************************************************
%
% (1) uxx at the interior points 3, 4,…, n-2
%
% To develop a set of fourth-order correct differentiation formulas
% for the second derivative uxx, we consider first the interior
% grid points at which a symmetric formula can be used.
%
% If we consider a formula of the form
%
% a*u(i-2) + b*u(i-1) + e*u(i) + c*u(i+1) + d*u(i+2)
%
% Taylor series expansions of u(i-2), u(i-1), u(i+1) and u(i+2)
% can be substituted into this formula. We then consider the
% linear albegraic equations relating a, b, c and d which will
% retain certain terms, i.e., uxx, and drop others, e.g., uxxx,
% uxxxx and uxxxxx.
%
% Thus, for grid points 3, 4,…, n-2
%
% To retain uxx
%
% 4*a + b + c + 4*d = 2 (1)
%
% To drop uxxx
%
% -8*a – b + c + 8*d = 0 (2)
%
% To drop uxxxx
%
% 16*a + b + c + 16*d = 0 (3)
%
% To drop uxxxxx
%
% -32*a – b + c + 32*d = 0 (4)
%
% Equations (1) to (4) can be solved for a, b, c and d. If equa-
% tion (1) is added to equation (2)
%
% -4*a + 2*c + 12*d = 2 (5)
%
% If equation (1) is subtracted from equation (3)
%
% 12*a + 12*d = -2 (6)
%
% If equation (1) is added to equation (4)
%
% -28*a + 2*c + 36*d = 2 (7)
%
% Equations (5) to (7) can be solved for a, c and d. If equation
% (5) is subtracted from equation (7), and the result combined
% with equation (6)
%
% 12*a + 12*d = -2 (6)
%
% -24*a + 24*d = 0 (8)
%
% Equations (6) and (8) can be solved for a and d. From (8), a
% = d. From equation (6), a = -1/12 and d = -1/12. Then, from
% equation (5), c = 4/3, and from equation (1), b = 4/3.
%
% The final differentiation formula is then obtained as
%
% (-1/12)*u(i-2) + (4/3)*u(i-1) +
%
% (4/3)*u(i+1) + (-1/12)*u(i+2)
%
% (-1/12 + 4/3 – 1/12 + 4/3)*u(i) + uxx(i)*(dx**2) + O(dx**6)
%
% or
%
% uxx(i) = (1/(12*dx**2))*(-1*u(i-2) + 16*u(i-1)
%
% – 30*u(i) + 16*u(i+1) – 1*u(i+2) (9)
%
% + O(dx**4)
%
% Note that the ux term drops out, i.e., the basic equation is
%
% -2*a – b + c + 2*d =
%
% -2*(-1/12) – (4/3) + (4/3) + 2*(-1/12) = 0
%
% Equation (9) was obtained by dropping all terms in the underlying
% Taylor series up to and including the fifth derivative, uxxxxx.
% Thus, equation (9) is exact for polynomials up to and including
% fifth order. This can be checked by substituting the functions
% 1, x, x**2, x**3, x**4 and x**5 in equation (9) and computing the
% corresponding derivatives for comparison with the known second
% derivatives. This is done for 1 merely by summing the weighting
% coefficients in equation (9), which should sum to zero, i.e.,
% -1 + 16 – 30 + 16 -1 = 0.
%
% For the remaining functions, the algebra is rather involved, but
% these functions can be checked numerically, i.e., numerical values
% of x**2, x**3, x**4 and x**5 can be substituted in equation (9)
% and the computed derivatives can be compared with the know numeri-
% cal second derivatives. This is not a proof of correctness of
% equation (9), but would likely detect any errors in equation (9).
%
% ******************************************************************
%
% (2) uxx at the interior points i = 2 and n-1
%
% For grid point 2, we consider a formula of the form
%
% a*u(i-1) + f*u(i) + b*u(i+1) + c*u(i+2) + d*u(i+3) + e*u(i+4)
%
% Taylor series expansions of u(i-1), u(i+1), u(i+2), u(i+3) and
% u(i+4) when substituted into this formula give linear algebraic
% equations relating a, b, c, d and e.
%
% To drop ux
%
% -a + b + 2*c + 3*d + 4*e = 0 (10)
%
% To retain uxx
%
% a + b + 4*c + 9*d + 16*e = 2 (11)
%
% To drop uxxx
%
% -a + b + 8*c + 27*d + 64*e = 0 (12)
%
% To drop uxxxx
%
% a + b + 16*c + 81*d + 256*e = 0 (13)
%
% To drop uxxxxx
%
% -a + b + 32*c + 243*d + 1024*e = 0 (14)
%
% Equations (11), (12), (13) and (14) can be solved for a, b, c,
% d and e. If equation (10) is added to equation (11)
%
% 2*b + 6*c + 12*d +20*e = 2 (15)
%
% If equation (10) is subtracted from equation (12)
%
% 6*c + 24*d + 60*e = 0 (16)
%
% If equation (10) is added to equation (13)
%
% 2*b + 18*c + 84*d + 260*e = 0 (17)
%
% If equation (10) is subtracted from equation (14)
%
% 30*c + 240*d + 1020*e = 0 (18)
%
% Equations (15), (16), (17) and (18) can be solved for b, c, d
% and e.
%
% 6*c + 24*d + 60*e = 0 (16)
%
% If equation (15) is subtracted from equation (17)
%
% 12*c + 72*d + 240*e = -2 (19)
%
% 30*c + 240*d + 1020*e = 0 (18)
%
% Equations (16), (18) and (19) can be solved for c, d and e. If
% two times equation (16) is subtracted from equation (19),
%
% 24*d + 120*e = -2 (20)
%
% If five times equation (16) is subtracted from equation (18),
%
% 120*d + 720*e = 0 (21)
%
% Equations (20) and (21) can be solved for d and e. From (21),
% e = (-1/6)*d. Substitution in equation (20) gives d = -1/2.
% thus, e = 1/12. From equation (16), c = 7/6. From equation
% (15), b = -1/3. From equation (10), a = 5/6.
%
% The final differentiation formula is then obtained as
%
% (5/6)*u(i-1) + (-1/3)*u(i+1) + (7/6)*u(i+2) + (-1/2)*u(i+3)
%
% + (1/12)*u(i+4) = (5/6 – 1/3 + 7/6 – 1/2 + 1/12)*u(i)
%
% + uxx*(dx**2) + O(dx**6)
%
% or
%
% uxx(i) = (1/12*dx**2)*(10*u(i-1) – 15*u(i) – 4*u(i+1)
% (22)
% + 14*u(i+2) – 6*u(i+3) + 1*u(i+4)) + O(dx**4)
%
% Equation (22) will be applied at i = 2 and n-1. thus
%
% uxx(2) = (1/12*dx**2)*(10*u(1) – 15*u(2) – 4*u(3)
% (23)
% + 14*u(4) – 6*u(5) + 1*u(6)) + O(dx**4)
%
% uxx(n-1) = (1/12*dx**2)*(10*u(n) – 15*u(n-1) – 4*u(n-2)
% (24)
% + 14*u(n-3) – 6*u(n-4) + 1*u(n-5)) + O(dx**4)
%
% ******************************************************************
%
% (3) uxx at the boundary points 1 and n
%
% Finally, for grid point 1, an approximation with a Neumann bound-
% ary condition of the form
%
% a*u(i+1) + b*u(i+2) + c*u(i+3) + d*u(i+4) + e*ux(i) + f*u(i)
%
% Will be used. the corresponding algebraic equations are
%
% To drop ux
%
% a + 2*b + 3*c + 4*d + e = 0 (25)
%
% To retain uxx
%
% a + 4*b + 9*c + 16*d = 2 (26)
%
% To drop uxxx
%
% a + 8*b + 27*c + 64*d = 0 (27)
%
% To drop uxxxx
%
% a + 16*b + 81*c + 256*d = 0 (28)
%
% To drop uxxxxx
%
% a + 32*b + 243*c + 1024*d = 0 (29)
%
% Equations (25) to (29) can be solved for a, b, c, d and e. If
%
% Equation (26) is subtracted from equations (27), (28) and (29),
%
% 4*b + 18*c + 48*d = -2 (30)
%
% 12*b + 72*c + 240*d = -2 (31)
%
% 28*b + 234*c + 1008*d = -2 (32)
%
% Equations (30), (31) and (32) can be solved for b, c and d
%
% 18*c + 96*d = 4 (33)
%
% 108*c + 672*d = 12 (34)
%
% Equations (3) and (34) can be solved for c and d, c = 8/9, d =
% -1/8.
%
% From equation (30), b = -3. From equation (26), a = 8. From
% equation (25), e = -25/6.
%
% The final differentiation formula is then obtained as
%
% 8*u(i+1) – 3*u(i+2) + (8/9)*u(i+3) – (1/8)*u(i+4)
%
% – (25/6)*ux(i)*dx
%
% = (8 – 3 + (8/9) – (1/8))*u(i) + uxx*(dx**2) + O(dx**6)
%
% or
%
% uxx(i) = (1/12*dx**2)*((-415/6)*u(i) + 96*u(i+1) – 36*u(i+2)
% (35)
% + (32/3)*u(i+3) – (3/2)*u(i+4) – 50*ux(i)*dx) + O(dx**4)
%
% Equation (35) will be applied at i = 1 and i = n
%
% uxx(1) = (1/12*dx**2)*((-415/6)*u(1) + 96*u(2) – 36*u(3)
% (36)
% + (32/3)*u(4) – (3/2)*u(5) – 50*ux(1)*dx) + O(dx**4)
%
% uxx(n) = (1/12*dx**2)*((-415/6)*u(n) + 96*u(n-1) – 36*u(n-2)
% (37)
% + (32/3)*u(n-3) – (3/2)*u(n-4) + 50*ux(n)*dx) + O(dx**4)
%
% Alternatively, for grid point 1, an approximation with a Dirichlet
% boundary condition of the form
%
% a*u(i+1) + b*u(i+2) + c*u(i+3) + d*u(i+4) + e*u(i+5) + f*u(i)
%
% can be used. The corresponding algebraic equations are
%
% To drop ux
%
% a + 2*b + 3*c + 4*d + 5*e = 0 (38)
%
% To retain uxx
%
% a + 4*b + 9*c + 16*d + 25*e = 2 (39)
%
% To drop uxxx
%
% a + 8*b + 27*c + 64*d + 125*e = 0 (40)
%
% To drop uxxxx
%
% a + 16*b + 81*c + 256*d + 625*e = 0 (41)
%
% To drop uxxxxx
%
% a + 32*b + 243*c + 1024*d + 3125*e = 0 (42)
%
% Equations (38), (39), (40), (41) amd (42) can be solved for a,
% b, c, d and e.
%
% 2*b + 6*c + 12*d + 20*e = 2 (43)
%
% 6*b + 24*c + 60*d + 120*e = 0 (44)
%
% 14*b + 78*c + 252*d + 620*e = 0 (45)
%
% 30*b + 240*c + 1020*d + 3120*e = 0 (46)
%
% Equations (43), (44), (45) and (46) can be solved for b, c, d
% and e
%
% 6*c + 24*d + 60*e = -6 (47)
%
% 36*c + 168*d + 480*e = -14 (48)
%
% 150*c + 840*d + 2820*e = -30 (49)
%
% Equations (47), (48) and (49) can be solved for c, d and e
%
% 24*d + 120*e = 22 (50)
%
% 240*d + 1320*e = 120 (51)
%
% From equations (50) and (51), d = 61/12, e = -5/6. From equation
% (47), c = -13. From equation (43), b = 107/6. From equation (38),
% a = -77/6.
%
% The final differentiation formula is then obtained as
%
% (-77/6)*u(i+1) + (107/6)*u(i+2) – 13*u(i+3) + (61/12)*u(i+4)
%
% – (5/6)*u(i+5) = (-77/6 + 107/6 – 13 + 61/12 – 5/6)*u(i) +
%
% uxx(i)*(dx**2) + O(dx**6)
%
% or
%
% uxx(i) = (1/12*dx**2)*(45*u(i) – 154*u(i+1) + 214*u(i+2)
% (52)
% – 156*u(i+3) + 61*u(i+4) – 10*u(i+5)) + O(dx**4)
%
% Equation (52) will be applied at i = 1 and i = n
%
% uxx(1) = (1/12*dx**2)*(45*u(1) – 154*u(2) + 214*u(3)
% (53)
% – 156*u(4) + 61*u(5) – 10*u(6)) + O(dx**4)
%
% uxx(n) = (1/12*dx**2)*(45*u(n) – 154*u(n-1) + 214*u(n-2)
% (54)
% -156*u(n-3) + 61*u(n-4) – 10*u(n-5)) + O(dx**4)
%
% ******************************************************************
%
% Grid spacing
dx=(xu-xl)/(n-1);
%
% 1/(12*dx**2) for subsequent use
r12dxs=1./(12.0*dx^2);
%
% uxx at the left boundary
%
% Without ux (equation (53))
if nl==1
uxx(1)=r12dxs*…
( 45.0*u(1)…
-154.0*u(2)…
+214.0*u(3)…
-156.0*u(4)…
+61.0*u(5)…
-10.0*u(6));
%
% With ux (equation (36))
elseif nl==2
uxx(1)=r12dxs*…
(-415.0/6.0*u(1)…
+96.0*u(2)…
-36.0*u(3)…
+32.0/3.0*u(4)…
-3.0/2.0*u(5)…
-50.0*ux(1)*dx);
end
%
% uxx at the right boundary
%
% Without ux (equation (54))
if nu==1
uxx(n)=r12dxs*…
( 45.0*u(n )…
-154.0*u(n-1)…
+214.0*u(n-2)…
-156.0*u(n-3)…
+61.0*u(n-4)…
-10.0*u(n-5));
%
% With ux (equation (37))
elseif nu==2
uxx(n)=r12dxs*…
(-415.0/6.0*u(n )…
+96.0*u(n-1)…
-36.0*u(n-2)…
+32.0/3.0*u(n-3)…
-3.0/2.0*u(n-4)…
+50.0*ux(n )*dx);
end
%
% uxx at the interior grid points
%
% i = 2 (equation (23))
uxx(2)=r12dxs*…
( 10.0*u(1)…
-15.0*u(2)…
-4.0*u(3)…
+14.0*u(4)…
-6.0*u(5)…
+1.0*u(6));
%
% i = n-1 (equation (24))
uxx(n-1)=r12dxs*…
( 10.0*u(n )…
-15.0*u(n-1)…
-4.0*u(n-2)…
+14.0*u(n-3)…
-6.0*u(n-4)…
+1.0*u(n-5));
%
% i = 3, 4,…, n-2 (equation (9))
for i=3:n-2
uxx(i)=r12dxs*…
( -1.0*u(i-2)…
+16.0*u(i-1)…
-30.0*u(i )…
+16.0*u(i+1)…
-1.0*u(i+2));
end
***********End of dss044.m **************************************************************************************[***Please find the matlab commands and PDF files***]
Now, I am trying to solve systems of PDEs (attached PDF file) by MATLAB. As you can see, this PDEs have three independent variable (z,r,t).
According to a kind suggestion by "Torsten" (http://www.mathworks.com/matlabcentral/answers/170648), I have discretized my equations about z- and r-coordinate. Then, I have developed matlab codes (PDEbook_s.m with pde_s.m, dss004,m and dss044.m) by using ode15s as follows. dss004 and dss044 (by http://www.pdecomp.net/) calculate first and second derivative values, respectively.
In this PDEs, the U and C values should decrease to zero value with increasing time. However, this values closed to a constant value. (Please run the commands in your command window) . Therefore, I think that this command cannot return correct values of the PDE systems now.
Can you find any problem in these codes?
*************PDEbook_s.m ****************************************************************************************
format short
%
% Clear previous files
clear all
clc
%
%Global data
global nr nz dr dz drs dzs…
r z zl r0 call tf ncall…
%
%Model parameters
zl=1;
r0=1;
%
% Grid in axial direcion
nz=10;
dz=zl/(nz-1);
for i=1:nz;
z(i)=(i-1)*dz;
end
dzs=dz^2;
%
%Grid in radial direction
nr=10;
dr=r0/(nr-1);
for j=1:nr
r(j)=(j-1)*dr;
end
drs=dr^2;
%
%Independent variables for ODE integration
tf=5;
delt=1.0E-2;
tout=[0.0:delt:(tf-delt)];
nout=(tf)/delt;
call=0;
%
%intial condition
for i=1:nz
for j=1:nr
C(i,j)=0;
U(i,j)=1;
y0((i-1)*nr+j)=C(i,j);
y0((i-1)*nr+j+nz*nr)=U(i,j);
end
end
%
%ODE integration
reltol=1.0E-4; abstol=1.0E-5;
options=odeset(‘RelTol’,reltol, ‘AbsTol’,abstol);
[t,y]=ode15s(@pde_s,tout,y0,options);
%
%1D to 2D matrices
for it=1:nout
for i=1:nz
for j=1:nr
C(it,i,j)=y(it,(i-1)*nr+j);
U(it,i,j)=y(it,(i-1)*nr+j+nz*nr);
end
end
end
%
% t-C,U plots (r=r0)
figure(1);
subplot(2,2,1)
plot(tout,C(:,1,nr),’–g’,tout,U(:,1,nr),’:r’); axis([0 tf 0 1]);
title(‘Solution(z=0,r=r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
subplot(2,2,2)
plot(tout,C(:,5,nr),’–g’,tout,U(:,5,nr),’:r’); axis([0 tf 0 1]);
title(‘Solution(z=4*dz,r=r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
subplot(2,2,3)
plot(tout,C(:,8,nr),’–g’,tout,U(:,8,nr),’:r’); axis([0 tf 0 1]);
title(‘Solution(z=*7dz,r=r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
subplot(2,2,4)
plot(tout,C(:,nz,nr),’–g’,tout,U(:,nz,nr),’:r’); axis([0 tf 0 1]);
title(‘Solution(z=zl,r=r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
%
% t-C,U plots (r=1/2r0)
figure(2);
subplot(2,2,1)
plot(tout,C(:,1,5),’–g’,tout,U(:,1,5),’:r’); axis([0 tf 0 1]);
title(‘Solution(=0,r=1/2r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
subplot(2,2,2)
plot(tout,C(:,5,5),’–g’,tout,U(:,5,5),’:r’); axis([0 tf 0 1]);
title(‘Solution(=4*dz,r=1/2r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
subplot(2,2,3)
plot(tout,C(:,8,5),’–g’,tout,U(:,8,5),’:r’); axis([0 tf 0 1]);
title(‘Solution(z=*7dz,r=1/2r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
subplot(2,2,4)
plot(tout,C(:,nz,5),’–g’,tout,U(:,nz,5),’:r’); axis([0 tf 0 1]);
title(‘Solution(z=zl,r=1/2r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
*****End of PDEbook_s****************************************************************************************
***********pde_s.m ****************************************************************************************
function yt=pde_s(t,y)
%
%Global data
global nr nz dr dz drs dzs…
r z zl r0 call tf ncall…
%
% 1D to 2D matrices
for i=1:nz
for j=1:nr
ij=(i-1)*nr+j;
C(i,j)=y(ij);
U(i,j)=y(ij+nr*nz);
end
end
%
% Step through the grid points in r and z
for i=1:nz
C1d=C(i,:); %1d means 1D value
U1d=U(i,:);
%
% Ur by dss004:Ur means first derivative of U for r
Ur1d=dss004(0.0,r0,nr,U1d); %Ur means first derivative of U for r
Ur(i,:)=Ur1d;
Ur(i,1)= 0.0; %B.C.1 of Eq.(1)
Ur(i,nr)=C(i,j)-U(i,nr);%B.C.2 of Eq.(1)
%
%Urr by dss 044 with the Neumann B.D. (nl=nu=2):Urr means second derivative of U for r
Ur1d( 1)=0.0;%B.C.1 of Eq.(1)
Ur1d(nr)=C1d(j)-U1d(nr);%B.C.2 of Eq.(1)
nl=2;
nu=2;
Urr1d=dss044(0.0,r0,nr,U1d,Ur1d,nl,nu);
Urr(i,:)=Urr1d;
%
for j=1:nr
%
% (1/r)*Ur
if(j~=1)
Ur(i,j)=(1.0/r(j))*Ur(i,j);
end
if(j==1)Urr(i,j)=2.0*Urr(i,j);end
%
% Cz by dss004:Cz means first derivative of C for z
Cz1d=dss004(0.0,zl,nz,C1d);
Cz(:,j)=Cz1d;
Cz(1,j)= C1d(1);%B.C.1 of Eq.(2)
Cz(nz,j)=0.0;%B.C.2 of Eq.(2)
%
% Czz by dss044 with the Neumann B.D. (nl=nu=2):Czz means second derivative of C for z
% Czz
Cz1d(1)=C(1,nr);%B.C.1 of Eq.(2)
Cz1d(nz)=0.0;%B.C.2 of Eq.(2)
nl=2;
nu=2;
Czz1d=dss044(0.0,zl,nz,C1d,Cz1d,nl,nu);
Czz(:,j)=Czz1d;
%
% PDEs
Ut(i,j)=(1/(1+U(i,j)))*Ur(i,j)+(1/(1+U(i,j)))*Urr(i,j); %Eq.(1)
Ct(i,j)=Czz(i,j)-Cz(i,j)+(U(i,nr)-C(i,j)); % Eq.(2)
end
end
%
% 2D to 1D matrices
for i=1:nz
for j=1:nr
ij=(i-1)*nr+j;
yt(ij)=Ct(i,j);
yt(ij+nr*nz)=Ut(i,j);
end
end
%
% Transpose and count
yt=yt’;
ncall=ncall+1;
end
***********End of pde_s.m ****************************************************************************************
***********dss004.m ****************************************************************************************
% File: dss004.m
%
function [ux]=dss004(xl,xu,n,u)
%
% Function dss004 computes the first derivative, u , of a
% x
% variable u over the spatial domain xl le x le xu from classical
% five-point, fourth-order finite difference approximations
%
% Argument list
%
% xl Lower boundary value of x (input)
%
% xu Upper boundary value of x (input)
%
% n Number of grid points in the x domain including the
% boundary points (input)
%
% u One-dimensional array containing the values of u at
% the n grid point points for which the derivative is
% to be computed (input)
%
% ux One-dimensional array containing the numerical
% values of the derivatives of u at the n grid points
% (output)
%
% The mathematical details of the following Taylor series (or
% polynomials) are given in routine dss002.
%
% Five-point formulas
%
% (1) Left end, point i = 1
%
% 2 3 4
% a(u2 = u1 + u1 ( dx) + u1 ( dx) + u1 ( dx) + u1 ( dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 ( dx) + u1 ( dx) + u1 ( dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% b(u3 = u1 + u1 (2dx) + u1 (2dx) + u1 (2dx) + u1 (2dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 (2dx) + u1 (2dx) + u1 (2dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% c(u4 = u1 + u1 (3dx) + u1 (3dx) + u1 (3dx) + u1 (3dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 (3dx) + u1 (3dx) + u1 (3dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% d(u5 = u1 + u1 (4dx) + u1 (4dx) + u1 (4dx) + u1 (4dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 (4dx) + u1 (4dx) + u1 (4dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% Constants a, b, c and d are selected so that the coefficients
% of the u1 terms sum to one and the coefficients of the u1 ,
% x 2x
% u1 and u1 terms sum to zero
% 3x 4x
%
% a + 2b + 3c + 4d = 1
%
% a + 4b + 9c + 16d = 0
%
% a + 8b + 27c + 64d = 0
%
% a + 16b + 81c + 256d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% u1 = (1/12dx)(-25u1 + 48u2 – 36u3 + 16u4 – 3u5) + O(dx ) (1)
% x
%
% (2) Interior point, i = 2
%
% 2 3 4
% a(u1 = u2 + u2 (-dx) + u2 (-dx) + u2 (-dx) + u2 (-dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 (-dx) + u2 (-dx) + u2 (-dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% b(u3 = u2 + u2 ( dx) + u2 ( dx) + u2 ( dx) + u2 ( dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 ( dx) + u2 ( dx) + u2 ( dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% c(u4 = u2 + u2 (2dx) + u2 (2dx) + u2 (2dx) + u2 (2dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 (2dx) + u2 (2dx) + u2 (2dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% d(u5 = u2 + u2 (3dx) + u2 (3dx) + u2 (3dx) + u2 (3dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 (3dx) + u2 (3dx) + u2 (3dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% -a + b + 2c + 3d = 1
%
% a + b + 4c + 9d = 0
%
% -a + b + 8c + 27d = 0
%
% a + b + 16c + 81d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% u2 = (1/12dx)(-3u1 – 10u2 + 18u3 – 6u4 + u5) + O(dx ) (2)
% x
%
% (3) Interior point i, i ne 2, n-1
%
% 2 3
% a(ui-2 = ui + ui (-2dx) + ui (-2dx) + ui (-2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui (-2dx) + ui (-2dx) + ui (-2dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% b(ui-1 = ui + ui ( -dx) + ui ( -dx) + ui ( -dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui ( -dx) + ui ( -dx) + ui ( -dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% c(ui+1 = ui + ui ( dx) + ui ( dx) + ui ( dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui ( dx) + ui ( dx) + ui ( dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% d(ui+2 = ui + ui ( 2dx) + ui ( 2dx) + ui ( 2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui ( 2dx) + ui ( 2dx) + ui ( 2dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% -2a – b + c + 2d = 1
%
% 4a + b + c + 4d = 0
%
% -8a – b + c + 8d = 0
%
% 16a + b + c + 16d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% ui = (1/12dx)(ui-2 – 8ui-1 + 0ui + 8ui+1 – ui+2) + O(dx ) (3)
% x
%
% (4) Interior point, i = n-1
%
% 2 3
% a(un-4 = un-1 + un-1 (-3dx) + un-1 (-3dx) + un-1 (-3dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 (-3dx) + un-1 (-3dx) + un-1 (-3dx) + …
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% b(un-3 = un-1 + un-1 (-2dx) + un-1 (-2dx) + un-1 (-2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 (-2dx) + un-1 (-2dx) + un-1 (-2dx) + …
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% c(un-2 = un-1 + un-1 ( -dx) + un-1 (- -x) + un-1 ( -dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 ( -dx) + un-1 ( -dx) + un-1 ( -dx) + …
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% d(un = un-1 + un-1 ( dx) + un-1 ( dx) + un-1 ( dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 ( dx) + un-1 ( dx) + un-1 ( dx) + …
% 4x 4f 5x 5f 6x 6f
%
% -3a – 2b – c + d = 1
%
% 9a + 4b + c + d = 0
%
% -27a – 8b – c + d = 0
%
% 81a + 16b + c + d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% un-1 = (1/12dx)(-un-4 + 6un-3 – 18un-2 + 10un-1 + 3un) + O(dx )
% x
% (4)
%
% (5) Right end, point i = n
%
% 2 3
% a(un-4 = un + un (-4dx) + un (-4dx) + un (-4dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un (-4dx) + un (-4dx) + un (-4dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% b(un-3 = un + un (-3dx) + un (-3dx) + un (-3dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un (-3dx) + un (-3dx) + un (-3dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% c(un-2 = un + un (-2dx) + un (-2dx) + un (-2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un (-2dx) + un (-2dx) + un (-2dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% d(un-1 = un + un ( -dx) + un ( -dx) + un ( -dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un ( -dx) + un ( -dx) + un ( -dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% -4a – 3b – 2c – d = 1
%
% 16a + 9b + 4c + d = 0
%
% -64a – 27b – 8c – d = 0
%
% 256a + 81b + 16c + d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% un = (1/12dx)(3un-4 – 16un-3 + 36un-2 – 48un-1 + 25un) + O(dx )
% x
% (5)
%
% The weighting coefficients for equations (1) to (5) can be
% summarized as
%
% -25 48 -36 16 -3
%
% -3 -10 18 -6 1
%
% 1/12 1 -8 0 8 -1
%
% -1 6 -18 10 3
%
% 3 -16 36 -48 25
%
% which are the coefficients reported by Bickley for n = 4, m =
% 1, p = 0, 1, 2, 3, 4 (Bickley, W. G., Formulae for Numerical
% Differentiation, Math. Gaz., vol. 25, 1941. Note – the Bickley
% coefficients have been divided by a common factor of two).
%
% Equations (1) to (5) can now be programmed to generate the
% derivative u (x) of function u(x).
% x
%
% Compute the spatial increment
dx=(xu-xl)/(n-1);
r4fdx=1./(12.*dx);
nm2=n-2;
%
% Equation (1) (note – the rhs of equations (1), (2), (3), (4)
% and (5) have been formatted so that the numerical weighting
% coefficients can be more easily associated with the Bickley
% matrix above)
ux( 1)=r4fdx*…
( -25.*u( 1) +48.*u( 2) -36.*u( 3) +16.*u( 4) -3.*u( 5));
%
% Equation (2)
ux( 2)=r4fdx*…
( -3.*u( 1) -10.*u( 2) +18.*u( 3) -6.*u( 4) +1.*u( 5));
%
% Equation (3)
for i=3:nm2
ux( i)=r4fdx*…
( +1.*u(i-2) -8.*u(i-1) +0.*u( i) +8.*u(i+1) -1.*u(i+2));
end
%
% Equation (4)
ux(n-1)=r4fdx*…
( -1.*u(n-4) +6.*u(n-3) -18.*u(n-2) +10.*u(n-1) +3.*u( n));
%
% Equation (5)
ux( n)=r4fdx*…
( 3.*u(n-4) -16.*u(n-3) +36.*u(n-2) -48.*u(n-1) +25.*u( n));
***********End of dss004.m **************************************************************************************
***********dss044.m ****************************************************************************************
% File: ds044.m
%
function [uxx]=dss044(xl,xu,n,u,ux,nl,nu)
%
% Function dss044 computes a fourth-order approximation of a
% second-order derivative, with or without the normal derivative
% at the boundary.
%
% Argument list
%
% xl Left value of the spatial independent variable (input)
%
% xu Right value of the spatial independent variable (input)
%
% n Number of spatial grid points, including the end
% points (input)
%
% u One-dimensional array of the dependent variable to be
% differentiated (input)
%
% ux One-dimensional array of the first derivative of u.
% The end values of ux, ux(1) and ux(n), are used in
% Neumann boundary conditions at x = xl and x = xu,
% depending on the arguments nl and nu (see the de-
% scription of nl and nu below)
%
% uxx One-dimensional array of the second derivative of u
% (output)
%
% nl Integer index for the type of boundary condition at
% x = xl (input). The allowable values are
%
% 1 – Dirichlet boundary condition at x = xl
% (ux(1) is not used)
%
% 2 – Neumann boundary condition at x = xl
% (ux(1) is used)
%
% nu Integer index for the type of boundary condition at
% x = xu (input). The allowable values are
%
% 1 – Dirichlet boundary condition at x = xu
% (ux(n) is not used)
%
% 2 – Neumann boundary condition at x = xu
% (ux(n) is used)
%
% The following derivation was completed by W. E. Schiesser, Depts
% of CHE and Math, Lehigh University, Bethlehem, PA 18015, USA, on
% December 15, 1986. Additional details are given in function
% dss042.
%
% ******************************************************************
%
% (1) uxx at the interior points 3, 4,…, n-2
%
% To develop a set of fourth-order correct differentiation formulas
% for the second derivative uxx, we consider first the interior
% grid points at which a symmetric formula can be used.
%
% If we consider a formula of the form
%
% a*u(i-2) + b*u(i-1) + e*u(i) + c*u(i+1) + d*u(i+2)
%
% Taylor series expansions of u(i-2), u(i-1), u(i+1) and u(i+2)
% can be substituted into this formula. We then consider the
% linear albegraic equations relating a, b, c and d which will
% retain certain terms, i.e., uxx, and drop others, e.g., uxxx,
% uxxxx and uxxxxx.
%
% Thus, for grid points 3, 4,…, n-2
%
% To retain uxx
%
% 4*a + b + c + 4*d = 2 (1)
%
% To drop uxxx
%
% -8*a – b + c + 8*d = 0 (2)
%
% To drop uxxxx
%
% 16*a + b + c + 16*d = 0 (3)
%
% To drop uxxxxx
%
% -32*a – b + c + 32*d = 0 (4)
%
% Equations (1) to (4) can be solved for a, b, c and d. If equa-
% tion (1) is added to equation (2)
%
% -4*a + 2*c + 12*d = 2 (5)
%
% If equation (1) is subtracted from equation (3)
%
% 12*a + 12*d = -2 (6)
%
% If equation (1) is added to equation (4)
%
% -28*a + 2*c + 36*d = 2 (7)
%
% Equations (5) to (7) can be solved for a, c and d. If equation
% (5) is subtracted from equation (7), and the result combined
% with equation (6)
%
% 12*a + 12*d = -2 (6)
%
% -24*a + 24*d = 0 (8)
%
% Equations (6) and (8) can be solved for a and d. From (8), a
% = d. From equation (6), a = -1/12 and d = -1/12. Then, from
% equation (5), c = 4/3, and from equation (1), b = 4/3.
%
% The final differentiation formula is then obtained as
%
% (-1/12)*u(i-2) + (4/3)*u(i-1) +
%
% (4/3)*u(i+1) + (-1/12)*u(i+2)
%
% (-1/12 + 4/3 – 1/12 + 4/3)*u(i) + uxx(i)*(dx**2) + O(dx**6)
%
% or
%
% uxx(i) = (1/(12*dx**2))*(-1*u(i-2) + 16*u(i-1)
%
% – 30*u(i) + 16*u(i+1) – 1*u(i+2) (9)
%
% + O(dx**4)
%
% Note that the ux term drops out, i.e., the basic equation is
%
% -2*a – b + c + 2*d =
%
% -2*(-1/12) – (4/3) + (4/3) + 2*(-1/12) = 0
%
% Equation (9) was obtained by dropping all terms in the underlying
% Taylor series up to and including the fifth derivative, uxxxxx.
% Thus, equation (9) is exact for polynomials up to and including
% fifth order. This can be checked by substituting the functions
% 1, x, x**2, x**3, x**4 and x**5 in equation (9) and computing the
% corresponding derivatives for comparison with the known second
% derivatives. This is done for 1 merely by summing the weighting
% coefficients in equation (9), which should sum to zero, i.e.,
% -1 + 16 – 30 + 16 -1 = 0.
%
% For the remaining functions, the algebra is rather involved, but
% these functions can be checked numerically, i.e., numerical values
% of x**2, x**3, x**4 and x**5 can be substituted in equation (9)
% and the computed derivatives can be compared with the know numeri-
% cal second derivatives. This is not a proof of correctness of
% equation (9), but would likely detect any errors in equation (9).
%
% ******************************************************************
%
% (2) uxx at the interior points i = 2 and n-1
%
% For grid point 2, we consider a formula of the form
%
% a*u(i-1) + f*u(i) + b*u(i+1) + c*u(i+2) + d*u(i+3) + e*u(i+4)
%
% Taylor series expansions of u(i-1), u(i+1), u(i+2), u(i+3) and
% u(i+4) when substituted into this formula give linear algebraic
% equations relating a, b, c, d and e.
%
% To drop ux
%
% -a + b + 2*c + 3*d + 4*e = 0 (10)
%
% To retain uxx
%
% a + b + 4*c + 9*d + 16*e = 2 (11)
%
% To drop uxxx
%
% -a + b + 8*c + 27*d + 64*e = 0 (12)
%
% To drop uxxxx
%
% a + b + 16*c + 81*d + 256*e = 0 (13)
%
% To drop uxxxxx
%
% -a + b + 32*c + 243*d + 1024*e = 0 (14)
%
% Equations (11), (12), (13) and (14) can be solved for a, b, c,
% d and e. If equation (10) is added to equation (11)
%
% 2*b + 6*c + 12*d +20*e = 2 (15)
%
% If equation (10) is subtracted from equation (12)
%
% 6*c + 24*d + 60*e = 0 (16)
%
% If equation (10) is added to equation (13)
%
% 2*b + 18*c + 84*d + 260*e = 0 (17)
%
% If equation (10) is subtracted from equation (14)
%
% 30*c + 240*d + 1020*e = 0 (18)
%
% Equations (15), (16), (17) and (18) can be solved for b, c, d
% and e.
%
% 6*c + 24*d + 60*e = 0 (16)
%
% If equation (15) is subtracted from equation (17)
%
% 12*c + 72*d + 240*e = -2 (19)
%
% 30*c + 240*d + 1020*e = 0 (18)
%
% Equations (16), (18) and (19) can be solved for c, d and e. If
% two times equation (16) is subtracted from equation (19),
%
% 24*d + 120*e = -2 (20)
%
% If five times equation (16) is subtracted from equation (18),
%
% 120*d + 720*e = 0 (21)
%
% Equations (20) and (21) can be solved for d and e. From (21),
% e = (-1/6)*d. Substitution in equation (20) gives d = -1/2.
% thus, e = 1/12. From equation (16), c = 7/6. From equation
% (15), b = -1/3. From equation (10), a = 5/6.
%
% The final differentiation formula is then obtained as
%
% (5/6)*u(i-1) + (-1/3)*u(i+1) + (7/6)*u(i+2) + (-1/2)*u(i+3)
%
% + (1/12)*u(i+4) = (5/6 – 1/3 + 7/6 – 1/2 + 1/12)*u(i)
%
% + uxx*(dx**2) + O(dx**6)
%
% or
%
% uxx(i) = (1/12*dx**2)*(10*u(i-1) – 15*u(i) – 4*u(i+1)
% (22)
% + 14*u(i+2) – 6*u(i+3) + 1*u(i+4)) + O(dx**4)
%
% Equation (22) will be applied at i = 2 and n-1. thus
%
% uxx(2) = (1/12*dx**2)*(10*u(1) – 15*u(2) – 4*u(3)
% (23)
% + 14*u(4) – 6*u(5) + 1*u(6)) + O(dx**4)
%
% uxx(n-1) = (1/12*dx**2)*(10*u(n) – 15*u(n-1) – 4*u(n-2)
% (24)
% + 14*u(n-3) – 6*u(n-4) + 1*u(n-5)) + O(dx**4)
%
% ******************************************************************
%
% (3) uxx at the boundary points 1 and n
%
% Finally, for grid point 1, an approximation with a Neumann bound-
% ary condition of the form
%
% a*u(i+1) + b*u(i+2) + c*u(i+3) + d*u(i+4) + e*ux(i) + f*u(i)
%
% Will be used. the corresponding algebraic equations are
%
% To drop ux
%
% a + 2*b + 3*c + 4*d + e = 0 (25)
%
% To retain uxx
%
% a + 4*b + 9*c + 16*d = 2 (26)
%
% To drop uxxx
%
% a + 8*b + 27*c + 64*d = 0 (27)
%
% To drop uxxxx
%
% a + 16*b + 81*c + 256*d = 0 (28)
%
% To drop uxxxxx
%
% a + 32*b + 243*c + 1024*d = 0 (29)
%
% Equations (25) to (29) can be solved for a, b, c, d and e. If
%
% Equation (26) is subtracted from equations (27), (28) and (29),
%
% 4*b + 18*c + 48*d = -2 (30)
%
% 12*b + 72*c + 240*d = -2 (31)
%
% 28*b + 234*c + 1008*d = -2 (32)
%
% Equations (30), (31) and (32) can be solved for b, c and d
%
% 18*c + 96*d = 4 (33)
%
% 108*c + 672*d = 12 (34)
%
% Equations (3) and (34) can be solved for c and d, c = 8/9, d =
% -1/8.
%
% From equation (30), b = -3. From equation (26), a = 8. From
% equation (25), e = -25/6.
%
% The final differentiation formula is then obtained as
%
% 8*u(i+1) – 3*u(i+2) + (8/9)*u(i+3) – (1/8)*u(i+4)
%
% – (25/6)*ux(i)*dx
%
% = (8 – 3 + (8/9) – (1/8))*u(i) + uxx*(dx**2) + O(dx**6)
%
% or
%
% uxx(i) = (1/12*dx**2)*((-415/6)*u(i) + 96*u(i+1) – 36*u(i+2)
% (35)
% + (32/3)*u(i+3) – (3/2)*u(i+4) – 50*ux(i)*dx) + O(dx**4)
%
% Equation (35) will be applied at i = 1 and i = n
%
% uxx(1) = (1/12*dx**2)*((-415/6)*u(1) + 96*u(2) – 36*u(3)
% (36)
% + (32/3)*u(4) – (3/2)*u(5) – 50*ux(1)*dx) + O(dx**4)
%
% uxx(n) = (1/12*dx**2)*((-415/6)*u(n) + 96*u(n-1) – 36*u(n-2)
% (37)
% + (32/3)*u(n-3) – (3/2)*u(n-4) + 50*ux(n)*dx) + O(dx**4)
%
% Alternatively, for grid point 1, an approximation with a Dirichlet
% boundary condition of the form
%
% a*u(i+1) + b*u(i+2) + c*u(i+3) + d*u(i+4) + e*u(i+5) + f*u(i)
%
% can be used. The corresponding algebraic equations are
%
% To drop ux
%
% a + 2*b + 3*c + 4*d + 5*e = 0 (38)
%
% To retain uxx
%
% a + 4*b + 9*c + 16*d + 25*e = 2 (39)
%
% To drop uxxx
%
% a + 8*b + 27*c + 64*d + 125*e = 0 (40)
%
% To drop uxxxx
%
% a + 16*b + 81*c + 256*d + 625*e = 0 (41)
%
% To drop uxxxxx
%
% a + 32*b + 243*c + 1024*d + 3125*e = 0 (42)
%
% Equations (38), (39), (40), (41) amd (42) can be solved for a,
% b, c, d and e.
%
% 2*b + 6*c + 12*d + 20*e = 2 (43)
%
% 6*b + 24*c + 60*d + 120*e = 0 (44)
%
% 14*b + 78*c + 252*d + 620*e = 0 (45)
%
% 30*b + 240*c + 1020*d + 3120*e = 0 (46)
%
% Equations (43), (44), (45) and (46) can be solved for b, c, d
% and e
%
% 6*c + 24*d + 60*e = -6 (47)
%
% 36*c + 168*d + 480*e = -14 (48)
%
% 150*c + 840*d + 2820*e = -30 (49)
%
% Equations (47), (48) and (49) can be solved for c, d and e
%
% 24*d + 120*e = 22 (50)
%
% 240*d + 1320*e = 120 (51)
%
% From equations (50) and (51), d = 61/12, e = -5/6. From equation
% (47), c = -13. From equation (43), b = 107/6. From equation (38),
% a = -77/6.
%
% The final differentiation formula is then obtained as
%
% (-77/6)*u(i+1) + (107/6)*u(i+2) – 13*u(i+3) + (61/12)*u(i+4)
%
% – (5/6)*u(i+5) = (-77/6 + 107/6 – 13 + 61/12 – 5/6)*u(i) +
%
% uxx(i)*(dx**2) + O(dx**6)
%
% or
%
% uxx(i) = (1/12*dx**2)*(45*u(i) – 154*u(i+1) + 214*u(i+2)
% (52)
% – 156*u(i+3) + 61*u(i+4) – 10*u(i+5)) + O(dx**4)
%
% Equation (52) will be applied at i = 1 and i = n
%
% uxx(1) = (1/12*dx**2)*(45*u(1) – 154*u(2) + 214*u(3)
% (53)
% – 156*u(4) + 61*u(5) – 10*u(6)) + O(dx**4)
%
% uxx(n) = (1/12*dx**2)*(45*u(n) – 154*u(n-1) + 214*u(n-2)
% (54)
% -156*u(n-3) + 61*u(n-4) – 10*u(n-5)) + O(dx**4)
%
% ******************************************************************
%
% Grid spacing
dx=(xu-xl)/(n-1);
%
% 1/(12*dx**2) for subsequent use
r12dxs=1./(12.0*dx^2);
%
% uxx at the left boundary
%
% Without ux (equation (53))
if nl==1
uxx(1)=r12dxs*…
( 45.0*u(1)…
-154.0*u(2)…
+214.0*u(3)…
-156.0*u(4)…
+61.0*u(5)…
-10.0*u(6));
%
% With ux (equation (36))
elseif nl==2
uxx(1)=r12dxs*…
(-415.0/6.0*u(1)…
+96.0*u(2)…
-36.0*u(3)…
+32.0/3.0*u(4)…
-3.0/2.0*u(5)…
-50.0*ux(1)*dx);
end
%
% uxx at the right boundary
%
% Without ux (equation (54))
if nu==1
uxx(n)=r12dxs*…
( 45.0*u(n )…
-154.0*u(n-1)…
+214.0*u(n-2)…
-156.0*u(n-3)…
+61.0*u(n-4)…
-10.0*u(n-5));
%
% With ux (equation (37))
elseif nu==2
uxx(n)=r12dxs*…
(-415.0/6.0*u(n )…
+96.0*u(n-1)…
-36.0*u(n-2)…
+32.0/3.0*u(n-3)…
-3.0/2.0*u(n-4)…
+50.0*ux(n )*dx);
end
%
% uxx at the interior grid points
%
% i = 2 (equation (23))
uxx(2)=r12dxs*…
( 10.0*u(1)…
-15.0*u(2)…
-4.0*u(3)…
+14.0*u(4)…
-6.0*u(5)…
+1.0*u(6));
%
% i = n-1 (equation (24))
uxx(n-1)=r12dxs*…
( 10.0*u(n )…
-15.0*u(n-1)…
-4.0*u(n-2)…
+14.0*u(n-3)…
-6.0*u(n-4)…
+1.0*u(n-5));
%
% i = 3, 4,…, n-2 (equation (9))
for i=3:n-2
uxx(i)=r12dxs*…
( -1.0*u(i-2)…
+16.0*u(i-1)…
-30.0*u(i )…
+16.0*u(i+1)…
-1.0*u(i+2));
end
***********End of dss044.m ************************************************************************************** [***Please find the matlab commands and PDF files***]
Now, I am trying to solve systems of PDEs (attached PDF file) by MATLAB. As you can see, this PDEs have three independent variable (z,r,t).
According to a kind suggestion by "Torsten" (http://www.mathworks.com/matlabcentral/answers/170648), I have discretized my equations about z- and r-coordinate. Then, I have developed matlab codes (PDEbook_s.m with pde_s.m, dss004,m and dss044.m) by using ode15s as follows. dss004 and dss044 (by http://www.pdecomp.net/) calculate first and second derivative values, respectively.
In this PDEs, the U and C values should decrease to zero value with increasing time. However, this values closed to a constant value. (Please run the commands in your command window) . Therefore, I think that this command cannot return correct values of the PDE systems now.
Can you find any problem in these codes?
*************PDEbook_s.m ****************************************************************************************
format short
%
% Clear previous files
clear all
clc
%
%Global data
global nr nz dr dz drs dzs…
r z zl r0 call tf ncall…
%
%Model parameters
zl=1;
r0=1;
%
% Grid in axial direcion
nz=10;
dz=zl/(nz-1);
for i=1:nz;
z(i)=(i-1)*dz;
end
dzs=dz^2;
%
%Grid in radial direction
nr=10;
dr=r0/(nr-1);
for j=1:nr
r(j)=(j-1)*dr;
end
drs=dr^2;
%
%Independent variables for ODE integration
tf=5;
delt=1.0E-2;
tout=[0.0:delt:(tf-delt)];
nout=(tf)/delt;
call=0;
%
%intial condition
for i=1:nz
for j=1:nr
C(i,j)=0;
U(i,j)=1;
y0((i-1)*nr+j)=C(i,j);
y0((i-1)*nr+j+nz*nr)=U(i,j);
end
end
%
%ODE integration
reltol=1.0E-4; abstol=1.0E-5;
options=odeset(‘RelTol’,reltol, ‘AbsTol’,abstol);
[t,y]=ode15s(@pde_s,tout,y0,options);
%
%1D to 2D matrices
for it=1:nout
for i=1:nz
for j=1:nr
C(it,i,j)=y(it,(i-1)*nr+j);
U(it,i,j)=y(it,(i-1)*nr+j+nz*nr);
end
end
end
%
% t-C,U plots (r=r0)
figure(1);
subplot(2,2,1)
plot(tout,C(:,1,nr),’–g’,tout,U(:,1,nr),’:r’); axis([0 tf 0 1]);
title(‘Solution(z=0,r=r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
subplot(2,2,2)
plot(tout,C(:,5,nr),’–g’,tout,U(:,5,nr),’:r’); axis([0 tf 0 1]);
title(‘Solution(z=4*dz,r=r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
subplot(2,2,3)
plot(tout,C(:,8,nr),’–g’,tout,U(:,8,nr),’:r’); axis([0 tf 0 1]);
title(‘Solution(z=*7dz,r=r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
subplot(2,2,4)
plot(tout,C(:,nz,nr),’–g’,tout,U(:,nz,nr),’:r’); axis([0 tf 0 1]);
title(‘Solution(z=zl,r=r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
%
% t-C,U plots (r=1/2r0)
figure(2);
subplot(2,2,1)
plot(tout,C(:,1,5),’–g’,tout,U(:,1,5),’:r’); axis([0 tf 0 1]);
title(‘Solution(=0,r=1/2r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
subplot(2,2,2)
plot(tout,C(:,5,5),’–g’,tout,U(:,5,5),’:r’); axis([0 tf 0 1]);
title(‘Solution(=4*dz,r=1/2r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
subplot(2,2,3)
plot(tout,C(:,8,5),’–g’,tout,U(:,8,5),’:r’); axis([0 tf 0 1]);
title(‘Solution(z=*7dz,r=1/2r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
subplot(2,2,4)
plot(tout,C(:,nz,5),’–g’,tout,U(:,nz,5),’:r’); axis([0 tf 0 1]);
title(‘Solution(z=zl,r=1/2r0)’)
xlabel(‘time’)
ylabel(‘C(green),U(red)’)
*****End of PDEbook_s****************************************************************************************
***********pde_s.m ****************************************************************************************
function yt=pde_s(t,y)
%
%Global data
global nr nz dr dz drs dzs…
r z zl r0 call tf ncall…
%
% 1D to 2D matrices
for i=1:nz
for j=1:nr
ij=(i-1)*nr+j;
C(i,j)=y(ij);
U(i,j)=y(ij+nr*nz);
end
end
%
% Step through the grid points in r and z
for i=1:nz
C1d=C(i,:); %1d means 1D value
U1d=U(i,:);
%
% Ur by dss004:Ur means first derivative of U for r
Ur1d=dss004(0.0,r0,nr,U1d); %Ur means first derivative of U for r
Ur(i,:)=Ur1d;
Ur(i,1)= 0.0; %B.C.1 of Eq.(1)
Ur(i,nr)=C(i,j)-U(i,nr);%B.C.2 of Eq.(1)
%
%Urr by dss 044 with the Neumann B.D. (nl=nu=2):Urr means second derivative of U for r
Ur1d( 1)=0.0;%B.C.1 of Eq.(1)
Ur1d(nr)=C1d(j)-U1d(nr);%B.C.2 of Eq.(1)
nl=2;
nu=2;
Urr1d=dss044(0.0,r0,nr,U1d,Ur1d,nl,nu);
Urr(i,:)=Urr1d;
%
for j=1:nr
%
% (1/r)*Ur
if(j~=1)
Ur(i,j)=(1.0/r(j))*Ur(i,j);
end
if(j==1)Urr(i,j)=2.0*Urr(i,j);end
%
% Cz by dss004:Cz means first derivative of C for z
Cz1d=dss004(0.0,zl,nz,C1d);
Cz(:,j)=Cz1d;
Cz(1,j)= C1d(1);%B.C.1 of Eq.(2)
Cz(nz,j)=0.0;%B.C.2 of Eq.(2)
%
% Czz by dss044 with the Neumann B.D. (nl=nu=2):Czz means second derivative of C for z
% Czz
Cz1d(1)=C(1,nr);%B.C.1 of Eq.(2)
Cz1d(nz)=0.0;%B.C.2 of Eq.(2)
nl=2;
nu=2;
Czz1d=dss044(0.0,zl,nz,C1d,Cz1d,nl,nu);
Czz(:,j)=Czz1d;
%
% PDEs
Ut(i,j)=(1/(1+U(i,j)))*Ur(i,j)+(1/(1+U(i,j)))*Urr(i,j); %Eq.(1)
Ct(i,j)=Czz(i,j)-Cz(i,j)+(U(i,nr)-C(i,j)); % Eq.(2)
end
end
%
% 2D to 1D matrices
for i=1:nz
for j=1:nr
ij=(i-1)*nr+j;
yt(ij)=Ct(i,j);
yt(ij+nr*nz)=Ut(i,j);
end
end
%
% Transpose and count
yt=yt’;
ncall=ncall+1;
end
***********End of pde_s.m ****************************************************************************************
***********dss004.m ****************************************************************************************
% File: dss004.m
%
function [ux]=dss004(xl,xu,n,u)
%
% Function dss004 computes the first derivative, u , of a
% x
% variable u over the spatial domain xl le x le xu from classical
% five-point, fourth-order finite difference approximations
%
% Argument list
%
% xl Lower boundary value of x (input)
%
% xu Upper boundary value of x (input)
%
% n Number of grid points in the x domain including the
% boundary points (input)
%
% u One-dimensional array containing the values of u at
% the n grid point points for which the derivative is
% to be computed (input)
%
% ux One-dimensional array containing the numerical
% values of the derivatives of u at the n grid points
% (output)
%
% The mathematical details of the following Taylor series (or
% polynomials) are given in routine dss002.
%
% Five-point formulas
%
% (1) Left end, point i = 1
%
% 2 3 4
% a(u2 = u1 + u1 ( dx) + u1 ( dx) + u1 ( dx) + u1 ( dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 ( dx) + u1 ( dx) + u1 ( dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% b(u3 = u1 + u1 (2dx) + u1 (2dx) + u1 (2dx) + u1 (2dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 (2dx) + u1 (2dx) + u1 (2dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% c(u4 = u1 + u1 (3dx) + u1 (3dx) + u1 (3dx) + u1 (3dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 (3dx) + u1 (3dx) + u1 (3dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% d(u5 = u1 + u1 (4dx) + u1 (4dx) + u1 (4dx) + u1 (4dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u1 (4dx) + u1 (4dx) + u1 (4dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% Constants a, b, c and d are selected so that the coefficients
% of the u1 terms sum to one and the coefficients of the u1 ,
% x 2x
% u1 and u1 terms sum to zero
% 3x 4x
%
% a + 2b + 3c + 4d = 1
%
% a + 4b + 9c + 16d = 0
%
% a + 8b + 27c + 64d = 0
%
% a + 16b + 81c + 256d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% u1 = (1/12dx)(-25u1 + 48u2 – 36u3 + 16u4 – 3u5) + O(dx ) (1)
% x
%
% (2) Interior point, i = 2
%
% 2 3 4
% a(u1 = u2 + u2 (-dx) + u2 (-dx) + u2 (-dx) + u2 (-dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 (-dx) + u2 (-dx) + u2 (-dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% b(u3 = u2 + u2 ( dx) + u2 ( dx) + u2 ( dx) + u2 ( dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 ( dx) + u2 ( dx) + u2 ( dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% c(u4 = u2 + u2 (2dx) + u2 (2dx) + u2 (2dx) + u2 (2dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 (2dx) + u2 (2dx) + u2 (2dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% 2 3 4
% d(u5 = u2 + u2 (3dx) + u2 (3dx) + u2 (3dx) + u2 (3dx)
% x 1f 2x 2f 3x 3f 4x 4f
%
% 5 6 7
% + u2 (3dx) + u2 (3dx) + u2 (3dx) + …)
% 5x 5f 6x 6f 7x 7f
%
% -a + b + 2c + 3d = 1
%
% a + b + 4c + 9d = 0
%
% -a + b + 8c + 27d = 0
%
% a + b + 16c + 81d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% u2 = (1/12dx)(-3u1 – 10u2 + 18u3 – 6u4 + u5) + O(dx ) (2)
% x
%
% (3) Interior point i, i ne 2, n-1
%
% 2 3
% a(ui-2 = ui + ui (-2dx) + ui (-2dx) + ui (-2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui (-2dx) + ui (-2dx) + ui (-2dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% b(ui-1 = ui + ui ( -dx) + ui ( -dx) + ui ( -dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui ( -dx) + ui ( -dx) + ui ( -dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% c(ui+1 = ui + ui ( dx) + ui ( dx) + ui ( dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui ( dx) + ui ( dx) + ui ( dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% d(ui+2 = ui + ui ( 2dx) + ui ( 2dx) + ui ( 2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + ui ( 2dx) + ui ( 2dx) + ui ( 2dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% -2a – b + c + 2d = 1
%
% 4a + b + c + 4d = 0
%
% -8a – b + c + 8d = 0
%
% 16a + b + c + 16d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% ui = (1/12dx)(ui-2 – 8ui-1 + 0ui + 8ui+1 – ui+2) + O(dx ) (3)
% x
%
% (4) Interior point, i = n-1
%
% 2 3
% a(un-4 = un-1 + un-1 (-3dx) + un-1 (-3dx) + un-1 (-3dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 (-3dx) + un-1 (-3dx) + un-1 (-3dx) + …
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% b(un-3 = un-1 + un-1 (-2dx) + un-1 (-2dx) + un-1 (-2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 (-2dx) + un-1 (-2dx) + un-1 (-2dx) + …
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% c(un-2 = un-1 + un-1 ( -dx) + un-1 (- -x) + un-1 ( -dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 ( -dx) + un-1 ( -dx) + un-1 ( -dx) + …
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% d(un = un-1 + un-1 ( dx) + un-1 ( dx) + un-1 ( dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un-1 ( dx) + un-1 ( dx) + un-1 ( dx) + …
% 4x 4f 5x 5f 6x 6f
%
% -3a – 2b – c + d = 1
%
% 9a + 4b + c + d = 0
%
% -27a – 8b – c + d = 0
%
% 81a + 16b + c + d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% un-1 = (1/12dx)(-un-4 + 6un-3 – 18un-2 + 10un-1 + 3un) + O(dx )
% x
% (4)
%
% (5) Right end, point i = n
%
% 2 3
% a(un-4 = un + un (-4dx) + un (-4dx) + un (-4dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un (-4dx) + un (-4dx) + un (-4dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% b(un-3 = un + un (-3dx) + un (-3dx) + un (-3dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un (-3dx) + un (-3dx) + un (-3dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% c(un-2 = un + un (-2dx) + un (-2dx) + un (-2dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un (-2dx) + un (-2dx) + un (-2dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% 2 3
% d(un-1 = un + un ( -dx) + un ( -dx) + un ( -dx)
% x 1f 2x 2f 3x 3f
%
% 4 5 6
% + un ( -dx) + un ( -dx) + un ( -dx) + …)
% 4x 4f 5x 5f 6x 6f
%
% -4a – 3b – 2c – d = 1
%
% 16a + 9b + 4c + d = 0
%
% -64a – 27b – 8c – d = 0
%
% 256a + 81b + 16c + d = 0
%
% Simultaneous solution for a, b, c and d followed by the solu-
% tion of the preceding Taylor series, truncated after the u
% 4x
% terms, for u1 gives the following five-point approximation
% x
% 4
% un = (1/12dx)(3un-4 – 16un-3 + 36un-2 – 48un-1 + 25un) + O(dx )
% x
% (5)
%
% The weighting coefficients for equations (1) to (5) can be
% summarized as
%
% -25 48 -36 16 -3
%
% -3 -10 18 -6 1
%
% 1/12 1 -8 0 8 -1
%
% -1 6 -18 10 3
%
% 3 -16 36 -48 25
%
% which are the coefficients reported by Bickley for n = 4, m =
% 1, p = 0, 1, 2, 3, 4 (Bickley, W. G., Formulae for Numerical
% Differentiation, Math. Gaz., vol. 25, 1941. Note – the Bickley
% coefficients have been divided by a common factor of two).
%
% Equations (1) to (5) can now be programmed to generate the
% derivative u (x) of function u(x).
% x
%
% Compute the spatial increment
dx=(xu-xl)/(n-1);
r4fdx=1./(12.*dx);
nm2=n-2;
%
% Equation (1) (note – the rhs of equations (1), (2), (3), (4)
% and (5) have been formatted so that the numerical weighting
% coefficients can be more easily associated with the Bickley
% matrix above)
ux( 1)=r4fdx*…
( -25.*u( 1) +48.*u( 2) -36.*u( 3) +16.*u( 4) -3.*u( 5));
%
% Equation (2)
ux( 2)=r4fdx*…
( -3.*u( 1) -10.*u( 2) +18.*u( 3) -6.*u( 4) +1.*u( 5));
%
% Equation (3)
for i=3:nm2
ux( i)=r4fdx*…
( +1.*u(i-2) -8.*u(i-1) +0.*u( i) +8.*u(i+1) -1.*u(i+2));
end
%
% Equation (4)
ux(n-1)=r4fdx*…
( -1.*u(n-4) +6.*u(n-3) -18.*u(n-2) +10.*u(n-1) +3.*u( n));
%
% Equation (5)
ux( n)=r4fdx*…
( 3.*u(n-4) -16.*u(n-3) +36.*u(n-2) -48.*u(n-1) +25.*u( n));
***********End of dss004.m **************************************************************************************
***********dss044.m ****************************************************************************************
% File: ds044.m
%
function [uxx]=dss044(xl,xu,n,u,ux,nl,nu)
%
% Function dss044 computes a fourth-order approximation of a
% second-order derivative, with or without the normal derivative
% at the boundary.
%
% Argument list
%
% xl Left value of the spatial independent variable (input)
%
% xu Right value of the spatial independent variable (input)
%
% n Number of spatial grid points, including the end
% points (input)
%
% u One-dimensional array of the dependent variable to be
% differentiated (input)
%
% ux One-dimensional array of the first derivative of u.
% The end values of ux, ux(1) and ux(n), are used in
% Neumann boundary conditions at x = xl and x = xu,
% depending on the arguments nl and nu (see the de-
% scription of nl and nu below)
%
% uxx One-dimensional array of the second derivative of u
% (output)
%
% nl Integer index for the type of boundary condition at
% x = xl (input). The allowable values are
%
% 1 – Dirichlet boundary condition at x = xl
% (ux(1) is not used)
%
% 2 – Neumann boundary condition at x = xl
% (ux(1) is used)
%
% nu Integer index for the type of boundary condition at
% x = xu (input). The allowable values are
%
% 1 – Dirichlet boundary condition at x = xu
% (ux(n) is not used)
%
% 2 – Neumann boundary condition at x = xu
% (ux(n) is used)
%
% The following derivation was completed by W. E. Schiesser, Depts
% of CHE and Math, Lehigh University, Bethlehem, PA 18015, USA, on
% December 15, 1986. Additional details are given in function
% dss042.
%
% ******************************************************************
%
% (1) uxx at the interior points 3, 4,…, n-2
%
% To develop a set of fourth-order correct differentiation formulas
% for the second derivative uxx, we consider first the interior
% grid points at which a symmetric formula can be used.
%
% If we consider a formula of the form
%
% a*u(i-2) + b*u(i-1) + e*u(i) + c*u(i+1) + d*u(i+2)
%
% Taylor series expansions of u(i-2), u(i-1), u(i+1) and u(i+2)
% can be substituted into this formula. We then consider the
% linear albegraic equations relating a, b, c and d which will
% retain certain terms, i.e., uxx, and drop others, e.g., uxxx,
% uxxxx and uxxxxx.
%
% Thus, for grid points 3, 4,…, n-2
%
% To retain uxx
%
% 4*a + b + c + 4*d = 2 (1)
%
% To drop uxxx
%
% -8*a – b + c + 8*d = 0 (2)
%
% To drop uxxxx
%
% 16*a + b + c + 16*d = 0 (3)
%
% To drop uxxxxx
%
% -32*a – b + c + 32*d = 0 (4)
%
% Equations (1) to (4) can be solved for a, b, c and d. If equa-
% tion (1) is added to equation (2)
%
% -4*a + 2*c + 12*d = 2 (5)
%
% If equation (1) is subtracted from equation (3)
%
% 12*a + 12*d = -2 (6)
%
% If equation (1) is added to equation (4)
%
% -28*a + 2*c + 36*d = 2 (7)
%
% Equations (5) to (7) can be solved for a, c and d. If equation
% (5) is subtracted from equation (7), and the result combined
% with equation (6)
%
% 12*a + 12*d = -2 (6)
%
% -24*a + 24*d = 0 (8)
%
% Equations (6) and (8) can be solved for a and d. From (8), a
% = d. From equation (6), a = -1/12 and d = -1/12. Then, from
% equation (5), c = 4/3, and from equation (1), b = 4/3.
%
% The final differentiation formula is then obtained as
%
% (-1/12)*u(i-2) + (4/3)*u(i-1) +
%
% (4/3)*u(i+1) + (-1/12)*u(i+2)
%
% (-1/12 + 4/3 – 1/12 + 4/3)*u(i) + uxx(i)*(dx**2) + O(dx**6)
%
% or
%
% uxx(i) = (1/(12*dx**2))*(-1*u(i-2) + 16*u(i-1)
%
% – 30*u(i) + 16*u(i+1) – 1*u(i+2) (9)
%
% + O(dx**4)
%
% Note that the ux term drops out, i.e., the basic equation is
%
% -2*a – b + c + 2*d =
%
% -2*(-1/12) – (4/3) + (4/3) + 2*(-1/12) = 0
%
% Equation (9) was obtained by dropping all terms in the underlying
% Taylor series up to and including the fifth derivative, uxxxxx.
% Thus, equation (9) is exact for polynomials up to and including
% fifth order. This can be checked by substituting the functions
% 1, x, x**2, x**3, x**4 and x**5 in equation (9) and computing the
% corresponding derivatives for comparison with the known second
% derivatives. This is done for 1 merely by summing the weighting
% coefficients in equation (9), which should sum to zero, i.e.,
% -1 + 16 – 30 + 16 -1 = 0.
%
% For the remaining functions, the algebra is rather involved, but
% these functions can be checked numerically, i.e., numerical values
% of x**2, x**3, x**4 and x**5 can be substituted in equation (9)
% and the computed derivatives can be compared with the know numeri-
% cal second derivatives. This is not a proof of correctness of
% equation (9), but would likely detect any errors in equation (9).
%
% ******************************************************************
%
% (2) uxx at the interior points i = 2 and n-1
%
% For grid point 2, we consider a formula of the form
%
% a*u(i-1) + f*u(i) + b*u(i+1) + c*u(i+2) + d*u(i+3) + e*u(i+4)
%
% Taylor series expansions of u(i-1), u(i+1), u(i+2), u(i+3) and
% u(i+4) when substituted into this formula give linear algebraic
% equations relating a, b, c, d and e.
%
% To drop ux
%
% -a + b + 2*c + 3*d + 4*e = 0 (10)
%
% To retain uxx
%
% a + b + 4*c + 9*d + 16*e = 2 (11)
%
% To drop uxxx
%
% -a + b + 8*c + 27*d + 64*e = 0 (12)
%
% To drop uxxxx
%
% a + b + 16*c + 81*d + 256*e = 0 (13)
%
% To drop uxxxxx
%
% -a + b + 32*c + 243*d + 1024*e = 0 (14)
%
% Equations (11), (12), (13) and (14) can be solved for a, b, c,
% d and e. If equation (10) is added to equation (11)
%
% 2*b + 6*c + 12*d +20*e = 2 (15)
%
% If equation (10) is subtracted from equation (12)
%
% 6*c + 24*d + 60*e = 0 (16)
%
% If equation (10) is added to equation (13)
%
% 2*b + 18*c + 84*d + 260*e = 0 (17)
%
% If equation (10) is subtracted from equation (14)
%
% 30*c + 240*d + 1020*e = 0 (18)
%
% Equations (15), (16), (17) and (18) can be solved for b, c, d
% and e.
%
% 6*c + 24*d + 60*e = 0 (16)
%
% If equation (15) is subtracted from equation (17)
%
% 12*c + 72*d + 240*e = -2 (19)
%
% 30*c + 240*d + 1020*e = 0 (18)
%
% Equations (16), (18) and (19) can be solved for c, d and e. If
% two times equation (16) is subtracted from equation (19),
%
% 24*d + 120*e = -2 (20)
%
% If five times equation (16) is subtracted from equation (18),
%
% 120*d + 720*e = 0 (21)
%
% Equations (20) and (21) can be solved for d and e. From (21),
% e = (-1/6)*d. Substitution in equation (20) gives d = -1/2.
% thus, e = 1/12. From equation (16), c = 7/6. From equation
% (15), b = -1/3. From equation (10), a = 5/6.
%
% The final differentiation formula is then obtained as
%
% (5/6)*u(i-1) + (-1/3)*u(i+1) + (7/6)*u(i+2) + (-1/2)*u(i+3)
%
% + (1/12)*u(i+4) = (5/6 – 1/3 + 7/6 – 1/2 + 1/12)*u(i)
%
% + uxx*(dx**2) + O(dx**6)
%
% or
%
% uxx(i) = (1/12*dx**2)*(10*u(i-1) – 15*u(i) – 4*u(i+1)
% (22)
% + 14*u(i+2) – 6*u(i+3) + 1*u(i+4)) + O(dx**4)
%
% Equation (22) will be applied at i = 2 and n-1. thus
%
% uxx(2) = (1/12*dx**2)*(10*u(1) – 15*u(2) – 4*u(3)
% (23)
% + 14*u(4) – 6*u(5) + 1*u(6)) + O(dx**4)
%
% uxx(n-1) = (1/12*dx**2)*(10*u(n) – 15*u(n-1) – 4*u(n-2)
% (24)
% + 14*u(n-3) – 6*u(n-4) + 1*u(n-5)) + O(dx**4)
%
% ******************************************************************
%
% (3) uxx at the boundary points 1 and n
%
% Finally, for grid point 1, an approximation with a Neumann bound-
% ary condition of the form
%
% a*u(i+1) + b*u(i+2) + c*u(i+3) + d*u(i+4) + e*ux(i) + f*u(i)
%
% Will be used. the corresponding algebraic equations are
%
% To drop ux
%
% a + 2*b + 3*c + 4*d + e = 0 (25)
%
% To retain uxx
%
% a + 4*b + 9*c + 16*d = 2 (26)
%
% To drop uxxx
%
% a + 8*b + 27*c + 64*d = 0 (27)
%
% To drop uxxxx
%
% a + 16*b + 81*c + 256*d = 0 (28)
%
% To drop uxxxxx
%
% a + 32*b + 243*c + 1024*d = 0 (29)
%
% Equations (25) to (29) can be solved for a, b, c, d and e. If
%
% Equation (26) is subtracted from equations (27), (28) and (29),
%
% 4*b + 18*c + 48*d = -2 (30)
%
% 12*b + 72*c + 240*d = -2 (31)
%
% 28*b + 234*c + 1008*d = -2 (32)
%
% Equations (30), (31) and (32) can be solved for b, c and d
%
% 18*c + 96*d = 4 (33)
%
% 108*c + 672*d = 12 (34)
%
% Equations (3) and (34) can be solved for c and d, c = 8/9, d =
% -1/8.
%
% From equation (30), b = -3. From equation (26), a = 8. From
% equation (25), e = -25/6.
%
% The final differentiation formula is then obtained as
%
% 8*u(i+1) – 3*u(i+2) + (8/9)*u(i+3) – (1/8)*u(i+4)
%
% – (25/6)*ux(i)*dx
%
% = (8 – 3 + (8/9) – (1/8))*u(i) + uxx*(dx**2) + O(dx**6)
%
% or
%
% uxx(i) = (1/12*dx**2)*((-415/6)*u(i) + 96*u(i+1) – 36*u(i+2)
% (35)
% + (32/3)*u(i+3) – (3/2)*u(i+4) – 50*ux(i)*dx) + O(dx**4)
%
% Equation (35) will be applied at i = 1 and i = n
%
% uxx(1) = (1/12*dx**2)*((-415/6)*u(1) + 96*u(2) – 36*u(3)
% (36)
% + (32/3)*u(4) – (3/2)*u(5) – 50*ux(1)*dx) + O(dx**4)
%
% uxx(n) = (1/12*dx**2)*((-415/6)*u(n) + 96*u(n-1) – 36*u(n-2)
% (37)
% + (32/3)*u(n-3) – (3/2)*u(n-4) + 50*ux(n)*dx) + O(dx**4)
%
% Alternatively, for grid point 1, an approximation with a Dirichlet
% boundary condition of the form
%
% a*u(i+1) + b*u(i+2) + c*u(i+3) + d*u(i+4) + e*u(i+5) + f*u(i)
%
% can be used. The corresponding algebraic equations are
%
% To drop ux
%
% a + 2*b + 3*c + 4*d + 5*e = 0 (38)
%
% To retain uxx
%
% a + 4*b + 9*c + 16*d + 25*e = 2 (39)
%
% To drop uxxx
%
% a + 8*b + 27*c + 64*d + 125*e = 0 (40)
%
% To drop uxxxx
%
% a + 16*b + 81*c + 256*d + 625*e = 0 (41)
%
% To drop uxxxxx
%
% a + 32*b + 243*c + 1024*d + 3125*e = 0 (42)
%
% Equations (38), (39), (40), (41) amd (42) can be solved for a,
% b, c, d and e.
%
% 2*b + 6*c + 12*d + 20*e = 2 (43)
%
% 6*b + 24*c + 60*d + 120*e = 0 (44)
%
% 14*b + 78*c + 252*d + 620*e = 0 (45)
%
% 30*b + 240*c + 1020*d + 3120*e = 0 (46)
%
% Equations (43), (44), (45) and (46) can be solved for b, c, d
% and e
%
% 6*c + 24*d + 60*e = -6 (47)
%
% 36*c + 168*d + 480*e = -14 (48)
%
% 150*c + 840*d + 2820*e = -30 (49)
%
% Equations (47), (48) and (49) can be solved for c, d and e
%
% 24*d + 120*e = 22 (50)
%
% 240*d + 1320*e = 120 (51)
%
% From equations (50) and (51), d = 61/12, e = -5/6. From equation
% (47), c = -13. From equation (43), b = 107/6. From equation (38),
% a = -77/6.
%
% The final differentiation formula is then obtained as
%
% (-77/6)*u(i+1) + (107/6)*u(i+2) – 13*u(i+3) + (61/12)*u(i+4)
%
% – (5/6)*u(i+5) = (-77/6 + 107/6 – 13 + 61/12 – 5/6)*u(i) +
%
% uxx(i)*(dx**2) + O(dx**6)
%
% or
%
% uxx(i) = (1/12*dx**2)*(45*u(i) – 154*u(i+1) + 214*u(i+2)
% (52)
% – 156*u(i+3) + 61*u(i+4) – 10*u(i+5)) + O(dx**4)
%
% Equation (52) will be applied at i = 1 and i = n
%
% uxx(1) = (1/12*dx**2)*(45*u(1) – 154*u(2) + 214*u(3)
% (53)
% – 156*u(4) + 61*u(5) – 10*u(6)) + O(dx**4)
%
% uxx(n) = (1/12*dx**2)*(45*u(n) – 154*u(n-1) + 214*u(n-2)
% (54)
% -156*u(n-3) + 61*u(n-4) – 10*u(n-5)) + O(dx**4)
%
% ******************************************************************
%
% Grid spacing
dx=(xu-xl)/(n-1);
%
% 1/(12*dx**2) for subsequent use
r12dxs=1./(12.0*dx^2);
%
% uxx at the left boundary
%
% Without ux (equation (53))
if nl==1
uxx(1)=r12dxs*…
( 45.0*u(1)…
-154.0*u(2)…
+214.0*u(3)…
-156.0*u(4)…
+61.0*u(5)…
-10.0*u(6));
%
% With ux (equation (36))
elseif nl==2
uxx(1)=r12dxs*…
(-415.0/6.0*u(1)…
+96.0*u(2)…
-36.0*u(3)…
+32.0/3.0*u(4)…
-3.0/2.0*u(5)…
-50.0*ux(1)*dx);
end
%
% uxx at the right boundary
%
% Without ux (equation (54))
if nu==1
uxx(n)=r12dxs*…
( 45.0*u(n )…
-154.0*u(n-1)…
+214.0*u(n-2)…
-156.0*u(n-3)…
+61.0*u(n-4)…
-10.0*u(n-5));
%
% With ux (equation (37))
elseif nu==2
uxx(n)=r12dxs*…
(-415.0/6.0*u(n )…
+96.0*u(n-1)…
-36.0*u(n-2)…
+32.0/3.0*u(n-3)…
-3.0/2.0*u(n-4)…
+50.0*ux(n )*dx);
end
%
% uxx at the interior grid points
%
% i = 2 (equation (23))
uxx(2)=r12dxs*…
( 10.0*u(1)…
-15.0*u(2)…
-4.0*u(3)…
+14.0*u(4)…
-6.0*u(5)…
+1.0*u(6));
%
% i = n-1 (equation (24))
uxx(n-1)=r12dxs*…
( 10.0*u(n )…
-15.0*u(n-1)…
-4.0*u(n-2)…
+14.0*u(n-3)…
-6.0*u(n-4)…
+1.0*u(n-5));
%
% i = 3, 4,…, n-2 (equation (9))
for i=3:n-2
uxx(i)=r12dxs*…
( -1.0*u(i-2)…
+16.0*u(i-1)…
-30.0*u(i )…
+16.0*u(i+1)…
-1.0*u(i+2));
end
***********End of dss044.m ************************************************************************************** pde, ode15s, systems of pde, partial differential equation MATLAB Answers — New Questions